Processing math: 100%
Linear Energy Transfer of Heavy Ions in Silicon | IEEE Journals & Magazine | IEEE Xplore

Linear Energy Transfer of Heavy Ions in Silicon


Abstract:

Researchers performing radiation testing on electronic components often rely on semi-empirical prediction codes for determining the linear energy transfer (LET) (or elec...Show More

Abstract:

Researchers performing radiation testing on electronic components often rely on semi-empirical prediction codes for determining the linear energy transfer (LET) (or electronic stopping force) of ions, without paying much attention to their reliability. However, it is seen that estimations calculated with different codes can have over 10% discrepancies, especially in the case of heavy ions with higher LET (e.g., xenon). As a consequence of the modern component fabrication techniques this has become an important issue when studying the radiation durability of electronics. In order to clarify this inconsistency, LET measurements for ^{131}Xe and ^{82}Kr in silicon have been undertaken and obtained results are presented, discussed and compared with earlier predicted data.
Published in: IEEE Transactions on Nuclear Science ( Volume: 54, Issue: 4, August 2007)
Page(s): 1158 - 1162
Date of Publication: 31 August 2007

ISSN Information:

References is not available for this document.

I. Introduction

The Radiation Effects Facility (RADEF) [1], [2] at JYFL Accelerator Laboratory, Jyväskylä, Finland, is one of the European Space Agency's European Component Irradiation Facilities (ECIF). This facility has developed and regularly utilizes a heavy ion cocktail with an energy of 9.3 A MeV [3], [4]. This selection of ions includes seven different ion species from N to Xe. These can be used to cover linear energy transfer (LET) values in silicon from about 2 to 60 MeV/mg/cm2 for the use of single event effect (SEE) studies in semiconductor components. TableI summarizes the characteristics of the various ions included in this cocktail. The LET and range information for ions in silicon is given as calculated with the SRIM [5], [6] and LET Calculator [7] codes.

Select All
1.
A. Virtanen, A. Javanainen, H. Kettunen, A. Pirojenko, I. Riihimki and K. Ranttila, "RADiation Effects Facility JYFL", [online] Available: jyu.fi/accelerator/radef.
2.
A. Virtanen, "The use of particle accelerators for space projects", J. Phys.: Conf. Ser., vol. 41, pp. 101-114, 2006.
3.
A. Virtanen, R. Harboe-Sorensen, H. Koivisto, A. Pirojenko and K. Ranttila, "High penetration heavy ions at the RADEF test site", Proc. IEEE Conf. Proc. 7th Eur. Conf. Radiation Its Effects on Components Systems, pp. 499-502, 2003-Sep.-1519.
4.
H. Koivisto, P. Suominen, O. Tarvainen, A. Virtanen and A. Parkkinen, "Electron cyclotron resonance ion source related developmentwork for heavy-ion irradiation tests", Rev. Sci. Instrum., vol. 77, no. 3, pp. 03A316-1-03A316-3, Mar. 2006, [online] Available: http://link.aip.org/link/?RSI/77/03A316/1.
5.
J. F. Ziegler, J. P. Biersack, M. Ziegler, D. J. Marwick, G. A. Cuomo, W. A. Porter, et al., SRIM 2003 Code, 19842003.
6.
J. F. Ziegler, "SRIM-2003", Nucl. Instrum. Methods B, vol. 219220, pp. 1027-1036, 2004.
7.
V. Zajic, TVDG LET Calculator, 2001.
8.
R. Harboe-Sorensen, F. X. Guerre, J. G. Loquet and C. Tizon, "Heavy-ion single-event effects testing of lead-on-chip assembledhigh-density memories", IEEE Trans. Nucl. Sci., vol. 50, no. 6, pp. 2322-2327, 2003.
9.
Y. Zhang and H. J. Whitlow, "MeV ion beam modification of materials" in Electrostatic Accelerators, Germany, Berlin:Springer, 2005.
10.
H. J. Whitlow, Y. Zhang, H. Timmers, T. R. Ophel, R. G. Elliman, M. Li, et al., " Correlation of energy-lossand collected-charge in Si \$Delta {rmE}\$ detectors: Measurements using an Enge spectrometer ", Nucl. Instrum. Methods B, vol. 164165, pp. 186-190, 2000.
11.
Joint Meeting of ESA/ESTEC 7th QCA Final Presentation Day and RADECS Thematic Workshop on European SEE Accelerators, May 2005.
12.
W. H. Trzaska, V. Lyapin, T. Alanko, M. Mutterer, J. Raisanen, G. Tjurin, et al., "New approach to energy loss measurements", Nucl. Instrum. Methods B, vol. 195, no. 1, pp. 147-165, 2002.
13.
J. Perkowksi, W. H. Trzaska, J. Andrzejewski, V. Lyapin and T. Malkiewicz, " Energy loss of \$^{40}\$ Ar in Au: Comparison of TOF-E and TOF-TOF method ", Nucl. Instrum. Methods B, vol. 240, no. 12, pp. 333-336, 2005.
14.
K. Shima, T. Ishihara and T. Mikumo, "Empiricalformula for the average equilibrium charge-state of heavy ions behind variousfoils", Nucl. Instrum. Methods, vol. 200, no. 23, pp. 605-608, 1982.
15.
A. Fettouhi, H. Geissel, A. Schinner and P. Sigmund, "Stopping of high-Z ions at intermediate velocities", Nucl. Instrum. Methods B, vol. 245, no. 1, pp. 22-27, 2006.
16.
L. Evensen, T. Westgaard, V. Avdeichikov, L. Carlen, B. Jakobsson, Y. Murin, et al., " Thindetectors for the CHICSi \${Delta} {rmE}\$ -E telescope ", IEEE Trans. Nucl. Sci., vol. 44, no. 3, pp. 629-634, Jun. 1997.
17.
G. N. Knyazheva, S. V. Khlebnikov, E. M. Kozulin, T. E. Kuzmina, V. G. Lyapin, M. Mutterer, et al., " Energy losses of \$^{252}\$ Cf fission fragments in thin foils ", Nucl. Instrum. Methods B, vol. 248, no. 1, pp. 7-15, Jul. 2006.
18.
J. F. Ziegler, J. P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, New York:Pergamon, vol. 1, 1985.
19.
V. Zajic and P. Thieberger, "Heavyion linear energy transfer measurements during single event upset testingof electronic devices", IEEE Trans. Nucl. Sci., vol. 46, no. 1, pp. 59-69, 1999.
20.
C. Cohen and D. Dauvergne, "Highenergy channeling. Principle and typical applications", Nucl. Instrum. Methods B, vol. 225, pp. 40-71, 2004.
21.
G. Poggi, M. Bini, P. DelCarmine, F. Meucci, A. Olmi, A. Stefanini, et al., "Response of ion implanted silicon detectorsto fully stopped Au ions of 11.5 A MeV impinging along crystallographic directions", Nucl. Instrum. Methods B, vol. 119, no. 3, pp. 375-382, 1996.
22.
G. R. Piercy, F. Brown, J. A. Davies and M. McCargo, "Experimentalevidence for the increase of heavy ion ranges by channeling in crystallinestructure", Phys. Rev. Lett., vol. 10, no. 9, pp. 399, 1963.
Contact IEEE to Subscribe

References

References is not available for this document.