Abstract:
The eigenvalue-eigenvector-based approach for understanding the scattering mechanisms of polarimetric synthetic aperture radar (POLSAR) data leads to noisy classificatio...Show MoreMetadata
Abstract:
The eigenvalue-eigenvector-based approach for understanding the scattering mechanisms of polarimetric synthetic aperture radar (POLSAR) data leads to noisy classification results due to arbitrarily fixed zone boundaries in the H/\overline{\alpha} plane. In this paper, a new classification scheme that can address the inherent vagueness of class boundaries in the H/\overline{\alpha} plane was tested in order to improve the unsupervised classification of the microwave scattering mechanism by introducing concepts related to fuzzy sets. A 2-D fuzzy membership function was developed for the fuzzification of the 2-D H/ \overline{\alpha} plane. The proposed fuzzy H/\overline{ \alpha} classifier is composed of three steps: fuzzification of the H/\overline{\alpha} plane, iterative refinement of membership degrees using the c-means algorithm, and defuzzification for the final decision process. The performance of this new approach for the L-band NASA/Jet Propulsion Laboratory's Airborne SAR data obtained during the PACRIM-II experiment was shown to be consistently improved. This new classification technique can be applied to POLSAR data without any a priori information. The fuzzification of the zone boundaries can be further applied to the interpretation of the POLSAR data, e.g., multifrequency classification, retrieval of bio- and geophysical parameters, etc. In order to propose another implementation of the fuzzy boundary representation, we exploited the combination of the H/\overline{\alpha} state space and anisotropy information.
Published in: IEEE Transactions on Geoscience and Remote Sensing ( Volume: 45, Issue: 8, August 2007)
References is not available for this document.
Select All
1.
E. Rignot, R. Chellappa and P. Dubois, "Unsupervised segmentation of polarimetric SAR data using the covariance matrix", IEEE Trans. Geosci. Remote Sens., vol. 30, no. 4, pp. 697-705, Jul. 1992.
2.
L. J. Du and J. S. Lee, "Fuzzy classification of earth terrain covers using multi-look polarimetric SAR image data", Int. J. Remote Sens., vol. 17, no. 4, pp. 809-826, 1996.
3.
U. Benz, "Supervised fuzzy analysis of single- and multichannel SAR data", IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 1023-1037, Mar. 1999.
4.
Y. Hara, R. G. Atkins, S. H. Yueh, R. T. Shin and J. A. Kong, "Application of neural networks to radar image classification", IEEE Trans. Geosci. Remote Sens., vol. 32, no. 1, pp. 100-110, Jan. 1994.
5.
K. S. Chen, W. P. Huang, D. W. Tsay and F. Amar, "Classification of multifrequency polarimetric SAR image using a dynamic learning neural network", IEEE Trans. Geosci. Remote Sens., vol. 34, no. 3, pp. 814-820, Mar. 1996.
6.
Y. C. Tzeng and K. S. Chen, "A fuzzy neural network for SAR image classification", IEEE Trans. Geosci. Remote Sens., vol. 36, no. 2, pp. 301-307, Jan. 1998.
7.
C. T. Chen, K. S. Chen and J. S. Lee, "The use of fully polarimetric information for the fuzzy neural classification of SAR images", IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9, pp. 2089-2100, Sep. 2003.
8.
A. Garzelli, "Classification of polarimetric SAR images using adaptive neighbourhood structures", Int. J. Remote Sens., vol. 20, no. 8, pp. 1669-1675, May 1999.
9.
Y. Dong, A. K. Milne and B. C. Forster, "Segmentation and classification of vegetated areas using polarimetric SAR image", IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 321-329, Feb. 2001.
10.
P. Lombardo, M. Sciotti, T. M. Pellizzeri and M. Meloni, "Optimum model-based segmentation techniques for multifrequency polarimetric SAR images of urban areas", IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9, pp. 1959-1975, Sep. 2003.
11.
J. J. van Zyl, "Unsupervised classification of scattering mechanisms using radar polarimetry data", IEEE Trans. Geosci. Remote Sens., vol. 27, no. 1, pp. 36-45, Jan. 1989.
12.
A. Freeman and S. L. Durden, "A three-component scattering model for polarimetric SAR data", IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 963-973, May 1998.
13.
S. R. Cloude and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR", IEEE Trans. Geosci. Remote Sens., vol. 35, no. 1, pp. 68-78, Jan. 1997.
14.
S. R. Cloude and E. Pottier, "A review of target decomposition theorems in radar polarimetry", IEEE Trans. Geosci. Remote Sens., vol. 34, no. 2, pp. 498-518, Mar. 1996.
15.
J. S. Lee, M. R. Grunes, T. L. Ainsworth, L. J. Du, D. L. Schuler and S. R. Cloude, "Unsupervised classification using polarimetric decomposition and the complex Wishart classifier", IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2249-2258, Sep. 1999.
16.
E. Pottier and J. S. Lee, "Application of the H/A/alpha polarimetric decomposition theorem for unsupervised classification of fully polarimetric SAR data based on the Wishart distribution", Proc. Committee Earth Observing Satell. SAR Workshop, pp. 335-340, 1999-Oct.-26–29.
17.
L. Ferro-Famil, E. Pottier and J. S. Lee, "Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier", IEEE Trans. Geosci. Remote Sens., vol. 39, no. 11, pp. 2332-2342, Nov. 2001.
18.
S. R. Cloude, J. Fortuny, J. M. Lopez and A. J. Sieber, "Wide band polarimetric radar inversion studies for vegetation layers", IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2430-2442, Sep. 1999.
19.
I. Hajnsek, E. Pottier and S. R. Cloude, "Inversion of surface parameters from polarimetric SAR", IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4, pp. 727-744, Apr. 2003.
20.
Y. Q. Jin and F. Chen, "Polarimetric scattering indexes and information entropy of the SAR imagery for surface monitoring", IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2502-2506, Nov. 2002.
21.
K. R. Czuchlewski, J. K. Weissel and Y. Kim, "Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake Taiwan", J. Geophys. Res., vol. 108, no. F1, pp. 1-15, 2003.
22.
D. L. Schuler, J. S. Lee, D. Kasilingam and E. Pottier, "Measurement of ocean surface slopes and wave spectra using polarimetric SAR image data", Remote Sens. Environ., vol. 91, no. 2, pp. 198-211, May 2004.
23.
C. LÓpez-MartÍnez, E. Pottier and S. R. Cloude, "Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry", IEEE Trans. Geosci. Remote Sens., vol. 43, no. 9, pp. 2058-2074, Sep. 2005.
24.
L. A. Zadeh, "Fuzzy sets", Inf. Control, vol. 8, no. 3, pp. 338-353, Jun. 1965.
25.
N. W. Park, Multi-source spatial data fusion with geostatistical uncertainty assessment: Applications to landslide susceptibility analysis and land-cover classification, 2004.
26.
W. Kelly and J. Painter, "Hypertrapezoidal fuzzy membership functions", Proc. 5th IEEE Int. Conf. Fuzzy Syst., pp. 1279-1284, 1996-Sep.-8.
27.
J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms, New York:Plenum, 1981.
28.
P. R. Kersten, J. S. Lee and T. L. Ainsworth, "Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering", IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 519-527, Mar. 2005.
29.
J. S. Lee, M. R. Grunes and G. De Grandi, "Polarimetric SAR speckle filtering and its impact on terrain classification", IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, pp. 2363-2373, Sep. 1999.
30.
J. S. Lee, M. R. Grunes, E. Pottier and L. Ferro-Famil, "Unsupervised terrain classification preserving polarimetric scattering characteristics", IEEE Trans. Geosci. Remote Sens., vol. 42, no. 4, pp. 722-731, Apr. 2004.