Topology-Preserving Tissue Classification of Magnetic Resonance Brain Images | IEEE Journals & Magazine | IEEE Xplore

Topology-Preserving Tissue Classification of Magnetic Resonance Brain Images


Abstract:

This paper presents a new framework for multiple object segmentation in medical images that respects the topological properties and relationships of structures as given b...Show More

Abstract:

This paper presents a new framework for multiple object segmentation in medical images that respects the topological properties and relationships of structures as given by a template. The technique, known as topology-preserving, anatomy-driven segmentation (TOADS), combines advantages of statistical tissue classification, topology-preserving fast marching methods, and image registration to enforce object-level relationships with little constraint over the geometry. When applied to the problem of brain segmentation, it directly provides a cortical surface with spherical topology while segmenting the main cerebral structures. Validation on simulated and real images characterises the performance of the algorithm with regard to noise, inhomogeneities, and anatomical variations
Published in: IEEE Transactions on Medical Imaging ( Volume: 26, Issue: 4, April 2007)
Page(s): 487 - 496
Date of Publication: 02 April 2007

ISSN Information:

PubMed ID: 17427736
References is not available for this document.

I. Introduction

The topological properties of 2-D and 3-D objects are often very simple, regardless of their geometric complexity. Human anatomy generally follows this rule, even for extremely convoluted shapes like the cerebral cortex or the vasculature. It also imposes strict spatial relationships. For example, the brain is enclosed inside the skull, and the cerebellum and cerebrum are neighboring but separated organs, linked by the brainstem. These relationships can be largely captured by topology, by considering all the related structures simultaneously.

Select All
1.
D. Tosun, M. E. Rettmann and J. L. Prince, "Mappingtechniques for aligning sulci across multiple brains", 6th Annu. Int. Conf. Med. Image Computing Computer-Assisted Interventions (MICCAI), 2003-Nov.
2.
P. Thompson and A. Toga, "A framework for computational anatomy", Comput. Visualization Sci., vol. 5, pp. 1-12, 2002.
3.
G. E. Christensen, S. C. Joshi and M. I. Miller, "Volumetric transformation of brain anatomy", IEEE Trans. Med. Imag., vol. 16, no. 6, pp. 864-877, Dec. 1997.
4.
U. Grenander and M. I. Miller, "Computational anatomy: An emerging discipline", Q. Appl. Math., vol. LVI, no. 4, pp. 617-694, 1998.
5.
B. B. Avants and J. C. Gee, "Shape averaging with diffeomorphic flowsfor atlas creation", IEEE Int. Symp. Biomed. Imag. (ISBI), pp. 595-598, 2004.
6.
G. Gerig, S. Joshi, T. Fletcher, K. Gorczowski, S. Xu, S. Pizer, et al., "Statistics of populations ofimages and its embedded objects: Driving applications in neuroimaging", Proc. IEEE Int. Symp. Biomed. Imag., pp. 1120-1123, 2006-Apr.
7.
V. Kurtcuoglu, M. Soellinger, P. E. Summers, K. Boomsma, D. Poulikakos, P. Boesiger, et al., "Reconstruction of cerebrospinal fluid flowin the third ventricle based on mri data", Proc. 8th Int. Conf. Med. Image Computing Computer-Assisted Intervention (MICCAI05), pp. 786-793, 2005-Oct.
8.
P.-L. Bazin and D. L. Pham, "Topology correction using fast marching methods and itsapplication to brain segmentation", Proc. 8th Int. Conf. Med. Image Computing and Computer-Assisted Intervention (MICCAI05), 2005-Oct.
9.
F. Segonne, E. Grimson and B. Fischl, "Topological correction of subcortical segmentation", Proc. 6th Int. Conf. Med. Image Computing Computer Assisted Intervention (MICCAI03), pp. 695-702, 2003-Nov.
10.
X. Han, C. Xu, U. Braga-Neto and J. L. Prince, "Topologycorrection in brain cortex segmentation using a multiscale graph-based algorithm", IEEE Trans. Med. Imag., vol. 21, no. 2, pp. 109-121, Feb. 2002.
11.
D. W. Shattuck and R. M. Leahy, "Automated graph-based analysis and correctionof cortical volume topology", IEEE Trans. Med. Imag., vol. 20, no. 11, pp. 1167-1177, Nov. 2001.
12.
M. Kass, A. Witkin and D. Terzopoulos, "Snakes: Active contour models", Int. J. Comput. Vision, vol. 1, no. 4, pp. 321-331, 1988.
13.
C. Xu, D. L. Pham, M. E. Rettmann, D. N. Yu and J. L. Prince, "Reconstructionof the human cerebral cortex from magnetic resonance images", IEEE Trans. Med. Imag., vol. 18, no. 6, pp. 467-480, Jun. 1999.
14.
X. Han, C. Xu and J. L. Prince, "Atopology preserving level set method for geometric deformable models", IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 6, pp. 755-768, Jun. 2003.
15.
S. Bischoff and L. Kobbelt, "Sub-voxel topology control for level-setsurfaces", Computer Graphics Forum, vol. 22, no. 3, pp. 273-280, 2003.
16.
J.-F. Mangin, V. Frouin, I. Bloch, J. Regis and J. Lopez-Krahe, "From3-D magnetic resonance images to structural representations of the cortextopography using topology preserving deformations", J. Math. Imag. Vision, vol. 5, pp. 297-318, 1995.
17.
S. C. Zhu and A. L. Yuille, "Region competition: Unifying snakes regiongrowing and bayes/MDL for multiband image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 9, pp. 884-900, Dec. 1996.
18.
H. Li, A. Yezzi and L. Cohen, "3-Dbrain segmentation using dual-front active contours with optional user interaction", Int. J. Biomed. Imag., vol. 2006, pp. 1-17, 2006.
19.
G. K. Rohde, A. Aldroubi and B. M. Dawant, "The adaptative bases algorithm for intensity-basednonrigid image registration", IEEE Trans. Med. Imag., vol. 22, no. 11, pp. 1470-1479, Nov. 2003.
20.
J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain, New York:Thieme, 1988.
21.
P.-L. Bazin, M. McAuliffe, W. Gandler and D. L. Pham, "Free software tools for atlas-based volumetric neuroimageanalysis", SPIE Med. Imag. Conf., 2005-Feb.
22.
M. Couprie, F. Bezerra and G. Bertrand, "Topological operators for grayscale imageprocessing", J. Electron. Imag., vol. 10, no. 4, pp. 1003-1015, 2001.
23.
P.-L. Bazin and D. L. Pham, "Topology preserving tissue classificationwith fast marching and topology templates", Int. Conf. Inf. Process. Med. Imag. 2005 (IPMI05), 2005-Jul.
24.
K. V. Leemput, F. Maes, D. Vandermeulen and P. Suetens, "Automated model-based tissue classification of mr imagesof the brain", IEEE Trans. Med. Imag., vol. 18, no. 10, pp. 897-908, Oct. 1999.
25.
D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg and R. M. Leahy, "Magnetic resonance image tissue classificationusing a partial volume model", NeuroImage, vol. 13, no. 5, pp. 856-876, 2001.
26.
D. L. Pham, "Spatial models for fuzzy clustering", Computer Vision Image Understanding, vol. 84, pp. 285-297, 2001.
27.
Y. Zhang, M. Brady and S. Smith, "Segmentationof brain mr images through a hidden markov random field model and the expectation-maximisationalgorithm", IEEE Trans. Med. Imag., vol. 20, no. 1, pp. 45-57, Jan. 2001.
28.
X. Han, D. Pham, D. Tosun, M. Rettmann, C. Xu and J. Prince, "Cruise: Cortical reconstructiong using implicitsurface evolution", NeuroImage, vol. 23, no. 3, pp. 997-1012, 2004.
29.
D. Pham and J. Prince, "Robust unsupervised tissue classification in mr image", Proc. IEEE Int. Symp. Biomed. Imag., vol. 1, pp. 109-112, 2004-Apr.
30.
D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. Kabani, C. Holmes, et al., "Design and construction of a realistic digital brain phantom", IEEE Trans. Med. Imag., vol. 17, no. 3, pp. 463-468, Jun. 1998.
Contact IEEE to Subscribe

References

References is not available for this document.