Loading [a11y]/accessibility-menu.js
Cointegration of Gate-All-Around MOSFETs and Local Silicon-on-Insulator Optical Waveguides on Bulk Silicon | IEEE Journals & Magazine | IEEE Xplore

Cointegration of Gate-All-Around MOSFETs and Local Silicon-on-Insulator Optical Waveguides on Bulk Silicon


Abstract:

In this work we present a bulk silicon technology platform able to cointegrate gate-all-around (GAA) MOSFETs and local SOI waveguides with pentagonal cross section. Wire ...Show More

Abstract:

In this work we present a bulk silicon technology platform able to cointegrate gate-all-around (GAA) MOSFETs and local SOI waveguides with pentagonal cross section. Wire diagonals of 100-800 nm are obtained using a lithographic resolution of 0.8 mum. Well-functioning triangular multigate MOSFETs are reported, and tested up to 150 degC. A significant increase is observed in the low-field mobility mu0 for small devices (Weffles500 nm), which is attributed to local volume inversion in the corners. Preliminary characterization of the optical waveguides is carried out, showing optical losses of a few dB/cm. The processing is entirely CMOS compatible, does not require access to advanced lithography equipment, and is based on a silicon bulk substrate. Thus, this technology might serve as the basis for a low-cost, high-performance optical signaling platform
Published in: IEEE Transactions on Nanotechnology ( Volume: 6, Issue: 1, January 2007)
Page(s): 118 - 125
Date of Publication: 15 January 2007

ISSN Information:

References is not available for this document.

I. Introduction

In this paper we present a novel versatile process in which gate-all-around (GAA) and trigate MOSFETs of various sub-m cross sections (defined by a quasi-lithographic-free method) can be fabricated along with silicon optical waveguides using standard CMOS processing steps.

Select All
1.
X. Huang, "Sub 50-nm FinFET: PMOS", Tech. Dig. Int. Electron Devices Meeting, pp. 67-70, 1999.
2.
S. Harrison, "Highly performant double gate MOSFET realized with SON process", Tech. Dig. Int. Electron Devices Meeting, pp. 449-452, 2003.
3.
J.-P. Colinge, "Multiple-gate SOI MOSFETS", Solid-State Electron., vol. 48, pp. 897-905, 2004.
4.
R. A. Soref, "Electrooptical effects in silicon", IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123-129, Jan. 1987.
5.
A. Liu, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor", Nature, vol. 427, pp. 615-617, Feb. 2004.
6.
A. Liu, D. Samara-Rubio, L. Liao and M. Paniccia, "Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator", IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 2, pp. 367-372, Mar./Apr. 2005.
7.
K. E. Moselund, "Compact gate-all-around silicon light modulator for ultra high speed operation", Sensors Actuators, vol. 130–131, pp. 220-227, 2006.
8.
P. Dainesi, "CMOS compatible fully integrated Mach–Zender interferometer in SOI technology", IEEE Photon. Technol. Lett., vol. 12, no. 6, pp. 660-662, Jun. 2000.
9.
K. K. Lee, D. R. Lim and L. C. Kimerling, " Fabrication of ultralow-loss Si/SiO 2 waveguides by roughness reduction ", Opt. Lett., vol. 26, no. 23, pp. 1888-1890, Dec. 2001.
10.
V. Pott, D. Bouvet, J. Boucart, L. Tschuor, K. E. Moselund and A. M. Ionescu, "Low temperature single electron characteristics in gate-all-around MOSFETs", Proc. ESSDERC, pp. 427-430, 2006.
11.
R. S. Jacobsen, "Strained silicon as a new electro-optic material", Nature, vol. 441, pp. 199-202, May 2006.
12.
G. Ghibaudo, "New method for the extraction of MOSFET parameters", Electron. Lett., vol. 12, no. 9, pp. 543-545, Apr. 1988.
13.
G. Ghibaudo, "Critical MOSFETs operation for low voltage/low power ICs: Ideal characteristics parameter extraction electrical noise and RTS fluctuations", Microelectron. Eng., vol. 39, pp. 31-57, 1997.
14.
K. E. Moselund, D. Bouvet, L. Tschuor, V. Pott, P. Dainesi and A. M. Ionescu, "Local volume inversion and corner effects in triangular gate-all-around MOSFETs", Proc. ESSDERC, pp. 359-362, 2006.
15.
G. Guekos, Photonics Devices for Telecommunications: How to Model and Measure, Berlin, Germany:Springer-Verlag, 1999.
16.
P. Kapur and K. C. Saraswat, "Design of ion-implanted MOSFETs with very small physical dimensions", IEEE J. Solid-State Circuits, vol. SSC-9, no. 5, pp. 256-268, Oct. 1974.
17.
P. Kapur and K. C. Saraswat, "Comparisons between electrical and optical interconnects for on-chip signaling", Tech. Dig. Int. Interconnect Tech. Conf., pp. 89-91, 2002.
18.
P. Kapur and K. C. Saraswat, "Optical interconnects for future high performance integrated circuits", Physica E, vol. 16, pp. 620-627, 2003.
19.
L. C. Kimerling, "Silicon microphotonics", Appl. Surf. Science, vol. 159–160, pp. 8-13, 2000.
20.
J. M. Hartmann, " Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55 \$mu\$ m photodetection ", J. Appl. Phys., vol. 95, no. 10, pp. 91-99, 2004.
21.
H.-C. Luan, "High-quality Ge epilayers on Si with low threading-dislocation densities", Appl. Phys. Lett., vol. 75, no. 19, pp. 2909-2911, 1999.
22.
M. Rouviére, "Integration of germanium waveguide photodetectors for intrachip optical interconnects", Opt. Eng., vol. 44, no. 7, 2005.
23.
G. Dehlinger, "High-speed germanium-on-SOI lateral PIN photodiodes", IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2547-2549, Nov. 2004.
24.
L. Colace, "Ge on Si p-i-n photodiodes opearting at 10 Gbit/s", Appl. Phys. Lett., vol. 88, no. 10, 2006.
Contact IEEE to Subscribe

References

References is not available for this document.