Abstract:
Bit-error rates are computed for an on-off keying optical communication system using avalanche photodiodes (APDs). We use a model for the APD that includes dead space and...Show MoreMetadata
Abstract:
Bit-error rates are computed for an on-off keying optical communication system using avalanche photodiodes (APDs). We use a model for the APD that includes dead space and the finite response time. Dead space is the minimum distance that a newly generated carrier must travel in order to acquire sufficient energy to become capable of causing an impact ionization in the multiplication region of the APD. The detector's finite impulse response and its randomness are important for high data-rate systems. Using an exact analysis, we show that the presence of dead space enhances the performance at relatively low data rates. Using a Gaussian approximation technique with the exact mean and variance, we demonstrate that dead space degrades the performance at-high data rates since it is responsible for longer tails in the impulse response function of the APD, which in turn increases the effect of intersymbol interference.<>
Published in: IEEE Transactions on Communications ( Volume: 43, Issue: 1, January 1995)
DOI: 10.1109/26.385938
References is not available for this document.
Select All
2.
M. M. Hayat and B. E. A. Saleh, "Statistical properties of the impulse response function of double-carrier multiplication avalanche photodiodes including the effect of dead space", J. Lightwave Technol., vol. 10, pp. 1415-1425, 1992.
3.
P. P. Webb and R. J. Mclntyre, "Recent developments in silicon avalanche photodiodes", RCA Eng., vol. 27, pp. 96-102, 1982.
4.
S. D. Personick, "Statistics of a general class of avalanche detectors with application to optical communication", Bell Syst. Tech. J., vol. 50, pp. 3075-3095, 1971.
5.
J. E. Mazo and J. Salz, "On optical communication via direct detection of light pulses", Bell Syst. Tech. J., vol. 55, pp. 347-369, 1976.
6.
E. N. Gilbert and H. O. Pollak, "Amplitude distribution of shot noise", Bell Syst. Tech. J., vol. 39, pp. 333-350, 1960.
7.
C. W. Helstrom, "Computing the performance of optical receivers with avalanche detectors", IEEE Trans. Commun., vol. 36, pp. 61-66, 1988.
8.
G. L. Cariolaro, "Error probability in digital fiber optic communication systems", IEEE Trans. Inform. Theory, vol. IT-24, pp. 213-221, 1978.
9.
M. Mansuripur, J. W. Goodman, E. G. Rawson and R. E. Norton, "Fiber optic receiver error rate prediction using the Gram-Charlier series", IEEE Trans. Commun., vol. COM-28, pp. 402-407, Mar. 1980.
10.
S. D. Personick, P. Balaban and J. H. Bobsin, "A detailed comparison of four approaches to the calculation of the sensitivity of optical fiber system receivers", IEEE Trans. Commun., vol. COM-25, pp. 541-548, 1977.
11.
M. M. Hayat, Bit-error-rates for optical receivers using avalanche photodiodes, 1988.
12.
K. F. Brennan, Y. Wang, M. C. Teich, B. E. A. Saleh and T. Khorsandi, "Theory of the temporal response of a simple multiquantum—well avalanche photodiode", IEEE Trans. Electron. Devices, vol. ED-35, pp. 1456-1467, 1988.
13.
K B. Letaief and J. S. Sadowsky, "Computing bit-error probabilities for avalanche photodiode receivers by large deviation theory", IEEE Trans. Inform. Theory, vol. 38, pp. 1162-1169, 1992.
14.
M. M. Hayat, B. E. A. Saleh and M. C. Teich, "Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes", IEEE Trans. Electron Devices, vol. 39, pp. 546-552, 1992.
15.
M. M. Hayat, W. L. Sargeant and B. E. A. Saleh, "Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes", IEEE J. Quantum Electron., vol. 38, pp. 1360-1365, 1992.
16.
D. L. Snyder, Random Point Processes, New York:Wiley, 1975.
17.
J. A. Gubner, "Computation of shot-noise probability distributions and densities", SIAM J. Sci. Comput..
18.
A. Papoulis, "High density shot noise and Gaussianity", J. Appl. Prob., vol. 8, pp. 118-127, 1971.
19.
S. D. Personick, "Receiver design for optical fiber systems", Proc. IEEE, vol. 65, pp. 1670-1678, 1977.
20.
M. M. Hayat, Performance of optical communication systems using avalanche photodiodes with dead space, 1992.
21.
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York:Wiley, 1991.
22.
S. D. Personick, "New results on avalanche multiplication statistics with applications to optical detection", Bell Syst. Tech. J., vol. 50, pp. 167-189, 1971.