Abstract:
The author consider the problem of routing connections in an optical network using wavelength division multiplexing, where each connection between a pair of nodes in the ...Show MoreMetadata
Abstract:
The author consider the problem of routing connections in an optical network using wavelength division multiplexing, where each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, such that connections whose paths share a common link in the network are assigned different wavelengths. They derive an upper bound on the carried traffic of connections (or equivalently, a lower bound on the blocking probability) for any routing and wavelength assignment (RWA) algorithm in such a network. The bound scales with the number of wavelengths and is achieved asymptotically (when a large number of wavelengths is available) by a fixed RWA algorithm. Although computationally intensive, this bound can be used as a metric against which the performance of different RWA algorithms can be compared for networks of moderate size. They illustrate this by comparing the performance of a simple RWA algorithm via simulation with our bound. They also derive a similar bound for optical networks using dynamic wavelength converters, which are equivalent to circuit-switched telephone networks, and compare the two cases for different examples.<>
Date of Conference: 12-16 June 1994
Date Added to IEEE Xplore: 06 August 2002
Print ISBN:0-8186-5570-4