Abstract:
The efficient and fast control of electric power forms part of the key technologies of modern automated production. It is performed using electronic power converters. The...Show MoreMetadata
Abstract:
The efficient and fast control of electric power forms part of the key technologies of modern automated production. It is performed using electronic power converters. The converters transfer energy from a source to a controlled process in a quantized fashion, using semiconductor switches which are turned on and off at fast repetition rates. The algorithms which generate the switching functions-pulsewidth-modulation techniques-are manifold. They range from simple averaging schemes to involved methods of real-time optimization. This paper gives an overview.<>
Published in: Proceedings of the IEEE ( Volume: 82, Issue: 8, August 1994)
DOI: 10.1109/5.301684
References is not available for this document.
Select All
1.
P. K. Kovács, Transient Phenomena in Electrical Machines, The Netherlands, Amsterdam:Elsevier Science Pub., 1994.
2.
E. A. Klingshirn and H. E. Jordan, "A polyphase induction motor performance and losses on nonsinusoidal voltage sources", IEEE Trans. Power App.Syst., vol. PAS-87, pp. 624-631, Mar. 1968.
3.
J. M. D. Murphy and M. G. Egan, "A comparison of PWM strategies for inverter-fed induction motors", IEEE Trans. Ind. Appl., vol. IA-19, no. 3, pp. 363-369, May/June 1983.
4.
J. T. Boys and P. G. Handley, "Harmonic analysis of space vector modulated PWM waveforms", Proc. Inst. Elec. Eng., vol. 137, no. 4, pp. 197-204, 1990.
5.
F. C. Zach, R. Martinez, S. Keplinger and A. Seiser, "dynamically optimal switching patterns for PWM inverter drives", IEEE Trans. Ind. Appl., vol. IA-21, no. 4, pp. 975-986, July/Aug. 1985.
6.
T. A. Lipo, P. C. Krause and H. E. Jordan, "Harmonic torque and speed pulsations in a rectifier-inverter induction motor drive", IEEE Trans. Power App. Syst., vol. PAS-88, pp. 579-587, May 1969.
7.
T. G. Habetler and D. M. Divan, "Performance characterization of new discrete pulse modulated current regulator", IEEE Ind. Appl. Soc. Annu. Meet., pp. 395-405, 1988.
8.
"IEEE Std. P519", IEEE Recommended Practices and Requirements for Harmonics Control in Electric Power Systems.
9.
W. Leonhard, Control of Electrical Drives, Germay, Berlin, Heidelberg, 1985.
10.
A. Schönung and H. Stemmler, "Static frequency changers with subharmonic control in conjunction with reversible variable speed ac drives", Brown Boveri Rev., pp. 555-577, 1964.
11.
D. A. Grant and J. A. Houldsworth, "PWM ac motor drive employing ultrasonic carrier", IEE Conf. on Power Electronics Var. Speed Drives, pp. 234-240, 1984.
12.
J. W. Kolar, H. Ertl and F. C. Zach, "Influence of the modulation method on the conduction and switching losses of a PWM converter system", IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1063-1075, Nov./Dec. 1991.
13.
M. Depenbrock, "Pulsewidth control of a 3-phase inverter with nonsinosoidal phase voltages", IEEE/IAS Int. Semicond. Power Conv. Conf., pp. 399-398, 1975.
14.
"New sinosoidal pulsewidth modulated inverter", Proc. Inst. Elec. Eng., vol. 122, pp. 1279-1285, Nov. 1975.
15.
Intel Users Manual 8XC196MC, 1992.
16.
B. K. Bose and H. A. Sutherland, "A high-performance pulsewidth modulator for an inverter-fed drive system using a microcomputer", IEEE Trans. Ind. Appl., vol. IA-19, no. 2, pp. 235-243, Mar./Apr. 1983.
17.
"Computer-aided design of PWM inverter systems", Proc. Inst. Elec. Eng., vol. 129, no. 1, pp. 1-17, Jan. 1982.
18.
A. Busse and J. Holtz, "Multiloop control of a unity power factor fast-switching ac to dc converter", IEEE Power Electronics Specialists Conf., pp. 171-179, 1982.
19.
G. Pfaff, A. Weschta and A. Wick, "Design and experimental results of a brushless ac servo drive", IEEE/IAS Ann. Meet., pp. 692-697, 1982.
20.
J. Holtz, P. Lammert and W. Lotzkat, "High-speed drive system with ultrasonic MOSFET PWM inverter and single-chip microprocessor control", IEEE Trans. Ind. Appl., vol. IA-23, no. 6, pp. 1010-1015, Nov./Dec. 1987.
21.
J. Holtz and E. Buhe, "Field oriented asynchronous pulsewidth modulation for high performance ac machine drives operating at low switching frequency", IEEE Trans. Ind. Appl., vol. 27, no. 3, pp. 574-581, May/June 1991.
22.
O. Ogasawara, H. Akagi and A. Nabae, "A novel PWM scheme of voltage source inverters based on space vector theory", EPE European Conf. on Power Electronics and Applications, pp. 1197-1202, 1989.
23.
J. W. Kolar, H. Ertl and F. C. Zach, "Calculation of the passive and active component stress of three-phase PWM converter systems with high pulse rate", EPE European Conf. on Power Electronics and Applications, pp. 1303-1312, 1989.
24.
K. Heintze, "Pulsewidth modulating static inverters for the speed control of induction motors", Siemens Z., vol. 45, no. 3, pp. 154-161, 1971.
25.
G. B. Kliman and A. B. Plunkett, "Development of a modulation strategy for a PWM inverter drive", IEEE Trans. Ind. Appl., vol. IA-15, no. I, pp. 702-709, Jan./Feb. 1979.
26.
T. G. Habetler and D. Divan, "Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier", IEEE Trans. Power Electron., vol. 6, no. 3, pp. 356-363, July 1991.
27.
J. Holtz and L. Springob, "Reduced harmonics PWM controlled line-side converter for electric drives", IEEE Trans. Ind. Appl., vol. 29, no. 4, pp. 814-819, Nov. 1993.
28.
J. Holtz, W. Lotzkat and A. Khambadkone, "On continuous control of PWM inverters in the overmodulation range with transition to the six-step mode", IEEE Power Electronics Specialists Conf., 1992.
29.
S. P. Jackson, "Multiple pulse modulation in static inverters reduces selected output harmonics and provides smooth adjustment of fundamentals", IEEE Trans. Ind. Gen. Appl., vol. IGA-6, no. 4, pp. 357-360, July/Aug. 1970.
30.
J. Holtz, "On the performance of optimal pulsewidth modulation techniques", European Power Electron. J., pp. 17-26, 1993.