Abstract:
It is shown that when polarization-sensitive arrays consisting of crossed small loops and short dipoles are used, one can eliminate the requirement in the ESPRIT algorith...Show MoreMetadata
Abstract:
It is shown that when polarization-sensitive arrays consisting of crossed small loops and short dipoles are used, one can eliminate the requirement in the ESPRIT algorithm that sensors must occur in matched pairs. The dipoles and loops are sensitive to the polarizations of incident electromagnetic plane waves. The dipoles are sensitive to the incident electric field components, and the loops to magnetic field components of the incident waves. The invariance properties among the dipole and loop outputs of an arbitrary array of orthogonal loops and orthogonal dipoles are exploited to compute both the two-dimensional arrival angles and polarizations of incoming narrowband signals. It is shown that with dipoles and loops, vertical arrays are not necessary to obtain good direction estimates for signals from low angles.<>
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 41, Issue: 3, March 1993)
DOI: 10.1109/8.233120
References is not available for this document.
Select All
1.
R. Schmidt, A signal subspace approach to multiple emitter location and spectral estimation, Nov. 1981.
2.
E. Ferrara and T. Parks, "Direction finding with an array of antennas having diverse polarizations", IEEE Trans. Antennas Propagat., vol. 31, pp. 231-236, Mar. 1983.
3.
J. Capon, "High resolution frequency-wavenumber spectrum analysis", Proc. IEEE, vol. 57, pp. 1408-1418, August 1969.
4.
G. Borgiotti and L. Kaplan, "Superresolution of uncorrected interference sources by using adaptive array techniques", IEEE Trans. Antennas Propagat., vol. 27, pp. 842-845, Nov. 1979.
5.
R. O. Schmidt, "Multiple emitter location and signal parameter estimation", IEEE Trans. Antennas Propagat., vol. 34, pp. 276-280, Mar. 1986.
6.
I. Ziskind and M. Wax, "Maximum likelihood localization of diversely polarized sources by simulated annealing", IEEE Trans. Antennas Propagat., vol. 38, pp. 1111-1114, July 1990.
7.
S. Kirkpatrick, C. Gelatt and M. Vecchi, "Optimization by simulated annealing", Science, vol. 220, pp. 671-680, 1983.
8.
A. J. Weiss and B. Friedlander, "Performance analysis of diversely polarized antenna arrays", IEEE Trans. Signal Processing, vol. 39, pp. 1589-1603, July 1991.
9.
J. Li and R. T. Compton, "Angle and polarization estimation using ESPRIT with a polarization sensitive array", IEEE Trans. Antennas Propagat., vol. 39, pp. 1376-1383, Sept. 1991.
10.
R. Roy and T. Kailath, "ESPRIT—Estimation of signal parameters via rotational invariance techniques", IEEE Trans. Acoust. Speech Signal Process., vol. 37, pp. 984-995, July 1989.
11.
A. Nehorai and E. Paldi, "Vector sensor processing for electromagnetic source localization", Proc. 25th Asilomar Conf. Signals Syst. Comput., 1991-Nov.
12.
M. Wax and T. Kailath, "Detection of signals by information theoretic criteria", IEEE Trans. Acoust. Speech Signal Process., vol. 33, pp. 387-392, Apr. 1985.
13.
C. A. Balanis, Antenna Theory—Analysis and Design, New York:Harper Row, 1982.
14.
G. A. Deschamps, "Geometrical representation of the polarization of a plane electromagnetic wave", Proc. IRE, vol. 39, pp. 540-544, May 1951.
15.
R. C. Johnson and H. Jasik, Antenna Engineering Handbook, New York:McGraw-Hill, 1984.
16.
J. Li, "On polarization estimation using a crossed-dipole array", IEEE Trans. Signal Process..
17.
G. H. Golub and C. F. V. Loan, "An analysis of the total least squares problem", SIAM J. Numerical Analysis, vol. 17, pp. 883-893, Dec. 1980.
18.
G. W. Stewart, Introduction to Matrix Computations, New York:Academic Press, 1973.
19.
J. Li, "Performance analysis for angle and polarization estimation using ESPRIT", IEEE Trans. Aerospace and Electronic Systems.