Abstract:
A PMOS process resulting in very shallow, low-leakage source-drain junctions without high-temperature annealing following doping is discussed. The doping is performed usi...Show MoreMetadata
Abstract:
A PMOS process resulting in very shallow, low-leakage source-drain junctions without high-temperature annealing following doping is discussed. The doping is performed using gas immersion laser doping which relies on a melt/regrowth process, initiated by a pulsed excimer laser (XeCl, lambda =308 nm), to drive in the dopant species. The properties of the resulting source/drain layers are discussed. A significant feature of this process is that unwanted diffusions are eliminated because no high-temperature anneals are used after the doping step. Submicrometer PMOS devices fabricated using this process exhibit excellent short-channel behavior with some process conditions resulting in very little or no threshold-voltage shift down to submicrometer gate lengths.<>
Published in: IEEE Electron Device Letters ( Volume: 9, Issue: 10, October 1988)
DOI: 10.1109/55.17838
References is not available for this document.
Select All
1.
T. M. Liu and W. G. Oldham, "Channeling effect of low energy boron implant in (100) silicon", IEEE Electron Device Lett., vol. EDL-4, pp. 59-62, 1983.
2.
H. Ishiwara and S. Horita, "Formation of shallow p + n junctions by B-ion implantation in Si substrates with amorphous layers", Japan J. Appl. Phys., vol. 24, no. 5, pp. 568-573, 1985.
3.
A. C. Ajmera and G. A. Rozgonyi, "Elimination of end-of range and mask-edge lateral damage in Ge + preamorphized B + implanted Si", Appl. Phys. Lett., vol. 49, no. 10, pp. 1269-1271, 1986.
4.
M. Delfino, D. K. Sadana and A. E. Morgan, "Shallow junction formation by preamorphization with tin implantation", Appl. Phys. Lett., vol. 49, no. 10, pp. 575-577, 1986.
5.
R. Liu, D. S. Williams and W. T. Lynch, "Mechanisms for process-induced leakage in shallow silicided junctions", IEDM Tech. Dig., pp. 58-61, 1986.
6.
M. C. Ozturk, "Optimization of the germanium preamorphization conditions for shallow-junction formation", IEEE Trans. Electron Devices, vol. 35, no. 5, pp. 659-668, May 1988.
7.
P. G. Carey, T. W. Sigmon, R. L. Press and T. S. Fahlen, "Ultra-shallow high-concentration boron profiles for CMOS processing", IEEE Electron Device Lett., vol. EDL-6, pp. 241-243, 1985.
8.
P. G. Carey, K. Bezjian, T. W. Sigmon, P. Gildea and T. J. Magee, "Fabrication of submicrometer MOSFET's using gas immersion laser doping", IEEE Electron Device Lett., vol. EDL-7, pp. 440-442, 1986.
9.
P. G. Carey and T. W. Sigmon, "Characterization of diodes fabricated using the gas immersion laser doping (GILD) process in silicon", Proc. Symp. Laser Processes for Microelectronic Applications, vol. 88-10, pp. 44-52, 1988.
10.
E. Landi, P. G. Carey and T. W. Sigmon, "Numerical simulation of the gas immersion laser doping (GILD) process in silicon", IEEE Trans. Computer-Aided Des., vol. 7, no. 2, pp. 205-214, 1988.
11.
K. H. Weiner, B. M. McWilliams and T. W. Sigmon, "Measurements of melt depth limited diffusion in gas immersion laser-doped silicon", Proc. Symp. Laser Processes for Microelectronic Applications, vol. 88-10, pp. 53-61, 1988.
12.
P. G. Carey and T. W. Sigmon, to be published.
13.
C. P. Ho and S. Hansen, SUPREM III—A program for integrated circuit process modeling and simulation, July 1983.