Processing math: 100%
Three-dimensional contact imaging with an actuated whisker | IEEE Journals & Magazine | IEEE Xplore

Three-dimensional contact imaging with an actuated whisker


Abstract:

Contact sensors can provide high-information-density object surface sensing in harsh and/or opaque environments. This paper describes the design, modeling, control, and d...Show More

Abstract:

Contact sensors can provide high-information-density object surface sensing in harsh and/or opaque environments. This paper describes the design, modeling, control, and data processing of a contact imager consisting of a flexible whisker mounted on a two-axis robot through a load cell. The whisker sweeps around and into contact with unknown objects, determining the three-dimensional location of contact points to within a specified position resolution. During contact, the whisker bends along the surface normal, producing large deflections. The joint angles and load cell signals are numerically processed to determine the whisker shapes. Comparison of whisker shapes during bending determines contact point location. Experimental results for several objects with wide ranging surface curvature and roughness demonstrate 1.51-cm resolution for a 45.5-cm whisker
Published in: IEEE Transactions on Robotics ( Volume: 22, Issue: 4, August 2006)
Page(s): 844 - 848
Date of Publication: 07 August 2006

ISSN Information:

References is not available for this document.

I. Introduction

Robots and autonomous vehicles operating in unstructured environments require sensor input to make decisions. Obstacle avoidance and identification of environmental objects are necessary for these vehicles to interact with their surroundings. Vehicles often operate in harsh environments with limited communication bandwidth for operator control and video feedback. In obscured environments, traditional sensors may not be useful.

Select All
1.
R. Russell, "Using tactile whiskers to measure surfacecontours", Proc. IEEE Int. Conf. Robot. Autom., vol. 2, pp. 1295-1299, 1992-May.
2.
C. Zimmer, "By a whisker harbor seals catch thier prey", Science, vol. 293, no. 5527, pp. 29-31, Jul. 2001.
3.
G. Dehnhardt, B. Mauck and H. Bleckmann, "Sealwhiskers detect water movements", Nature, vol. 394, pp. 235-236, Jul. 1998.
4.
T. G. Barnes, T. Q. Truong, G. G. Adams and N. E. McGruer, "Large deflection analysis of a biomimetic lobster robotantenna due to contact and flow", ASME J. Appl. Mech., vol. 68, pp. 948-951, Nov. 2001.
5.
J. Snyder and J. F. Wilson, "Dynamics of the elastica with end mass and follower loading", ASME J. Appl. Mech., vol. 57, pp. 203-208, Mar. 1990.
6.
J. F. Wilson and U. Mahajan, "The mechanics and positioning of highly flexible manipulatorlimbs", ASME J. Mech. Transmissions Autom., vol. 111, no. 2, pp. 232-237, Jun. 1989.
7.
J. F. Wilson and Z. Chen, "A whisker probe system for shape perception of solids", ASME J. Dyn. Syst. Meas. Control, vol. 117, no. 1, pp. 104-108, Mar. 1995.
8.
J. A. Wijaya and R. Russell, "Object exploration using whisker sensors", Proc. Aus. Conf. Robot. Autom., pp. 180-185, 2002-Nov.
9.
T. Tsujimura and T. Yabuta, "A tactile sensing method employing force/torqueinformation through insensitive probes", Proc. IEEE Int. Conf. Robot. Autom., vol. 2, pp. 1315-1320, 1992-May.
10.
M. Kaneko and T. Tsuji, "A whisker tracing sensor with 5 mum sensitivity", Proc. IEEE Int. Conf. Robot. Autom., vol. 4, pp. 3907-3912, 2000-Apr.
11.
M. Kaneko, N. Kanayama and T. Tsuji, "Active antenna for contact sensing", IEEE Trans. Robot. Autom., vol. 14, no. 2, pp. 278-291, Apr. 1998.
12.
S. Hirose, S. Inoue and K. Yoneda, "Thewhisker sensor and the transmission of multiple sensor signals", Adv. Robot., vol. 4, no. 2, pp. 105-117, 1990.
13.
E. N. Schiebel, H. R. Busby and K. J. Waldron, "Design of a mechanical proximity sensor", Robotica, vol. 4, pp. 221-227, 1986.
14.
N. Ueno, M. M. Svinin and M. Kaneko, "Dynamic contact sensing by flexible beam", IEEE/ASME Trans. Mechatron., vol. 3, no. 4, pp. 254-263, Dec. 1998.
15.
G. R. Scholz and C. D. Rahn, "Profile sensing with an actuated whisker", IEEE Trans. Robot. Autom., vol. 20, no. 1, pp. 124-127, Feb. 2004.
16.
R. Russell and J. Wijaya, "Recognising and manipulating objects using data from a whiskersensor array", Robotica, pp. 653-664, 2005.
17.
M. Fend, S. Bovet and V. Hafner, "The artificial mouse—Arobot with whiskers and vision", Proc. 35th Int. Symp. Robot., pp. 1-6, 2004-Mar.
18.
B. Mitchinson, K. Gurney, P. Redgrave, C. Melhuish, A. Pipe, M. Pearson, et al., "Empirically inspired simulated electro-mechanicalmodel of the rat mystacial follicle-sinus-complex", Roy. Soc. Proc. (B) Biol. Sci., vol. 271, pp. 2509-2516, Dec. 2004.
19.
T. N. Clements, Three-dimensional contact imaging with an actuated whisker, Aug. 2004.
20.
F. P. Beer and E. R. Johnston, Mechanics of Materials, New York:McGraw-Hill, 1992.
21.
A. Love, A Treatise on the Mathematical Theory of Elasticity, New York:Dover, 1944.
22.
R. Frisch-Fay, Flexible Bars, DC, Washington:Butterworth, 1962.
Contact IEEE to Subscribe

References

References is not available for this document.