1. Introduction
In this paper, we consider the problem of recognizing the semantic category of an image. For example, we may want to classify a photograph as depicting a scene (forest, street, office, etc.) or as containing a certain object of interest. For such whole-image categorization tasks, bag-of-features methods, which represent an image as an orderless collection of local features, have recently demonstrated impressive levels of performance [7], [22], [23], [25]. However, because these methods disregard all information about the spatial layout of the features, they have severely limited descriptive ability. In particular, they are incapable of capturing shape or of segmenting an object from its background. Unfortunately, overcoming these limitations to build effective structural object descriptions has proven to be quite challenging, especially when the recognition system must be made to work in the presence of heavy clutter, occlusion, or large viewpoint changes. Approaches based on generative part models [3], [5] and geometric correspondence search [1], [11] achieve robustness at significant computational expense. A more efficient approach is to augment a basic bag-of-features representation with pairwise relations between neighboring local features, but existing implementations of this idea [11], [17] have yielded inconclusive results. One other strategy for increasing robustness to geometric deformations is to increase the level of invariance of local features (e.g., by using affine-invariant detectors), but a recent large-scale evaluation [25] suggests that this strategy usually does not pay off.