Loading [MathJax]/extensions/MathZoom.js
Exact robot navigation using artificial potential functions | IEEE Journals & Magazine | IEEE Xplore

Exact robot navigation using artificial potential functions


Abstract:

A methodology for exact robot motion planning and control that unifies the purely kinematic path planning problem with the lower level feedback controller design is prese...Show More

Abstract:

A methodology for exact robot motion planning and control that unifies the purely kinematic path planning problem with the lower level feedback controller design is presented. Complete information about a freespace and goal is encoded in the form of a special artificial potential function, called a navigation function, that connects the kinematic planning problem with the dynamic execution problem in a provably correct fashion. The navigation function automatically gives rise to a bounded-torque feedback controller for the robot's actuators that guarantees collision-free motion and convergence to the destination from almost all initial free configurations. A formula for navigation functions that guide a point-mass robot in a generalized sphere world is developed. The simplest member of this family is a space obtained by puncturing a disk by an arbitrary number of smaller disjoint disks representing obstacles. The other spaces are obtained from this model by a suitable coordinate transformation. Simulation results for planar scenarios are provided.<>
Published in: IEEE Transactions on Robotics and Automation ( Volume: 8, Issue: 5, October 1992)
Page(s): 501 - 518
Date of Publication: 06 August 2002

ISSN Information:

References is not available for this document.

Select All
1.
M. D. Adams, H. Hu and P. J. Roberts, "Towards a real-time architecture for obstacle avoidance and path planning in mobile robots", Proc. IEEE Int. Conf. Robotic Automat., pp. 584-589, 1990-May.
2.
S. Akishita, S. Kawamura and K.-I. Hayashi, "New navigation function utilizing hydrodynamic potential for mobile robot", Proc. IEEE Motion Control Conf., 1990.
3.
J. R. Andrews and N. Hogan, "Impedance control as a framework for implementing obstacle avoidance in a manipulator" in Control of Manufacturing and Robotic Systems, Boston:ASME, pp. 243-251, 1983.
4.
J. Barraquand, B. Langlois and J. C. Latombe, "Robot motion planning with many degrees of freedom and dynamic constraints", Proc. 5th Int. Symp. Robotics Res., pp. 74-83, 1989-Aug.
5.
J. Barraquand and J. C. Latombe, "A Monte-Carlo algorithm for path-planning with many degrees of freedom", Proc. IEEE Int. Conf. Robotics Automat., pp. 1712-1717, 1990-May.
6.
N. P. Bhatia and G. P. Szego, Dynamical Systems: Stability Theory and Applicaitons, New York:Springer-Verlag, 1967.
7.
J. E. Bobrow, S. Dubowsky and J. S. Gibson, "Time-optimal control of robotic maniupulators along specified paths", Int. J. Robotics Res., vol. 4, no. 3, pp. 3-17, 1985.
8.
J. Borenstein and Y. Koren, "Real-time obstacle avoidance for fast mobile robots", IEEE Trans. Syst. Man Cybern., vol. 19, no. 5, pp. 1179-1187, 1989.
9.
J. F. Canny, The complexity of robot motion planning, May 1987.
10.
C. I. Connolly, J. B. Burns and R. Weiss, "Path planning using Laplaces equation", Proc. IEEE Int. Conf. Robotics Automat., pp. 2102-2106, 1990-May.
11.
B. Donald and P. Xavier, "Near-optimal kinodynamic planning for robots with coupled dynamics bounds", Proc. IEEE Int. Symp. Intell. Contr., pp. 354-359, 1989-Sept.
12.
B. R. Donald, Error detection and recovery for robot motion planning with uncertainty, 1987.
13.
E. Freund, "Fast nonlinear control with arbitrary pole placement for industrial robots and manipulators", Int. J. Robotics Res., vol. 1, no. 1, pp. 65-78, 1983.
14.
V. Guillemin and A. Pollack, Differential Topology, NJ, Englewood Cliffs:Prentice-Hall, 1974.
15.
J. E. Hopcroft and G. Wilfong, "Motion of objects in contact", Int. J. Robotics Res., vol. 4, no. 4, pp. 32-46, 1986.
16.
O. Khatib, Commande dynamique dans lespace opérational des robots manipulateurs en présence dobstacles, 1980.
17.
O. Khatib, "Real time obstacle avoidance for maniupulators and mobile robots", Int. J. Robotics Res., vol. 5, no. 1, pp. 90-99, 1986.
18.
O Khatib and J.-F. Le Maitre, "Dynamic control of manipulators operating in a complex environment", Proc. Int. CISM-IFToMM Symp., pp. 267-282, 1978-Sept.
19.
P. Khosla and R. Volpe, "Superquadric artifical potentials for obstacle avoidance and approach", Proc. IEEE Int. Conf. Robotics and Automat., pp. 1778-1784, 1988-Apr.
20.
J.-O. Kim and P. K. Khosla, Real-time obstacle avoidance using harmonic potential functions, 1990.
21.
D. E. Koditschek, "Natural motion for robot arms", Proc. 23rd IEEE Conf. Decision Contr., pp. 733-735, 1984-Dec.
22.
D. E. Koditschek, "Globally stable closed loops imply autonomous behavior", Proc. 5th IEEE Int. Symp. Intell. Contr., 1990-Sept.
23.
D. E. Koditschek, "An approach to autonomous robot assembly", Robotica, 1991.
24.
D. E. Koditschek, "The control of natural motion in mechanical systems", ASME J. Dynam. Syst. Meas. Contr., Sept. 1991.
25.
D. E. Koditschek and E. Rimon, "Robot navigation functions on manifolds with boundary", Advances Appl. Math., vol. 11, pp. 412-442, 1990.
26.
B. H. Krogh, "A generalized potential field approach to obstacle avoidance control", Proc. SME Conf. Robotics Res., 1984-Aug.
27.
T. Lozano-Perez and A.. Handey, "A robot system that recognizes plans and manipulates", Proc. IEEE Int. Conf. Robotics Automat., pp. 843-849, 1987.
28.
T. Lozano-Perez, M. T. Mason and R. H. Taylor, "Automatic synthesis of fine-motion strategies for robots", Int. J. Robotics Res., vol. 3, no. 1, pp. 3-23, 1984.
29.
J. Y. S. Luh, M. W. Walker and R. P. Paul, "Resolved acceleration control of mechanical manipulators", IEEE Trans. Automat. Contr., vol. AC-25, pp. 468-474, 1980.
30.
F. Miyazaki and S. Arimoto, "Sensory feedback based on the artificial potential for robot manipulators", Proc. 9th IFAC, 1984-July.
Contact IEEE to Subscribe

References

References is not available for this document.