Abstract:
The authors present a three-level rate equation model, describing structurally dependent modulation bandwidth limitations in quantum-well lasers. They demonstrate an enha...Show MoreMetadata
Abstract:
The authors present a three-level rate equation model, describing structurally dependent modulation bandwidth limitations in quantum-well lasers. They demonstrate an enhanced damping as well as a capacitivelike rolloff in the modulation response due to the transport time and carrier injection bottleneck. They also show that, for relatively short transport times, the dominant effect is that of damping, and they calculate an approximated explicit expression for a structure-dependent nonlinear gain compression coefficient.<>
Published in: IEEE Journal of Quantum Electronics ( Volume: 28, Issue: 10, October 1992)
DOI: 10.1109/3.159531
References is not available for this document.
Select All
1.
G. P. Agrawal and N. K. Dutta, Long Wavelength Semiconductor Lasers, New York:Van Nostrand Reinhold, 1986.
2.
G. Eisenstein, J. M. Wiesenfeld, M. Wegener, G. Sucha, D. S. Chemla, S. Weiss, et al., "Ultra fast gain dynamics in 1.5 mm multiple quantum well optical amplifiers", Appl. Phys. Lett., vol. 58, no. 14, pp. 158-160, 1991.
3.
S. Weiss, J. M. Wiesenfeld, D. S. Chemla, G. Raybon, G. Sucha, G. Eisenstein, et al., "Comparison of gain recovery dynamics among multiple quantum well optical amplifiers with different confinement structures", Appl. Phys. Lett., vol. 60, no. 6, pp. 6-9, 1992.
4.
S. Morin, B. Deveaud, F. Clerot, K. Fujiwara and K. Mitsunaga, "Capture of photoexcited carriers in a single quantum well with different confinement structures", IEEE J. Quantum Electron., vol. 27, pp. 1669-1675, June 1991.
5.
J. A. Brum, T. Weil, J. Nagle and B. Vinter, "Calculation of carrier capture time of a quantum well in graded-index separate-confinement heterostructures", Phys. Rev. B, vol. 34, pp. 2381-2384, 1986.
6.
M. Babiker and B. K. Ridely, "Effective-mass eigenfunctions in superlattices and their role in well-capture", Superlat. Microstruct., vol. 2, pp. 287-291, 1986.
7.
P. W. M. Blom, R. F. Mols, J. E. M. Haverkort, M. R. Leys and J. H. Wolter, "Picosecond carrier capture by a separate confinement laser structure", Dig. 16th Europ. Conf. Opt. Commun., 1990.
8.
N. Tessler, R. Nagar, D. Abraham and G. Eisenstein, "Coupling between barrier and Quantum well energy states in a multiple quantum well optical amplifier", Appl. Phys. Lett., vol. 60, no. 60, pp. 665-667, 1992.
9.
B. Deveaud, J. Shah, T. C. Damen and W. T. Tsang, "Capture of electrons and holes in quantum wells", Appl. Phys. Lett., vol. 52, pp. 1886-1888, 1988.
10.
N. Ogasawara, A. Fujiwara, N. Ohgushi, S. Fukatsu, Y. Shiraki, Y. Katayama, et al., "Well width dependence of photoluminescence excitation spectra in GaAs/AlGaAs quantum well", Phys. Rev. B, vol. 42, pp. 9562-9565, 1990.
11.
Y. Murayama, "Theory of well-width-dependent periodic variation in photoluminescence from AlGaAs/GaAs quantum wells", Phys. Rev. B, vol. 34, pp. 2500-2507, 1986.
12.
R. Nagar, N. Tessler, D. Abraham, G. Eisenstein, U. Koren and G. Raybon, "Measurements of the barrier-well injection bottleneck in a multiple quantum well optical amplifier", Appl. Phys. Lett., vol. 60, pp. 1788-1790, 1992.
13.
W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassel and B. Elman, "Well barrier hole burning in quantum well lasers", IEEE Photon. Technol. Lett., vol. 3, pp. 784-786, 1991.
14.
M. Yamaguchi, N. Storkfelt and K. E. Stubkjaer, "Recombination constants and alpha factor in InGaAs/lnGaAsP MQW-amplifiers", Dig. 17th Europ. Conf. Opt. Commun., 1991.
15.
J. M. Wiesenfeld, A. H. Gnauck, G. Raybon and U. Koren, "Multiple quantum well optical power amplifier for high speed lightwave systems", Dig. Conf. Lasers Electroopt., 1991.
16.
H. Hirayama, Y. Miyake and M. Asada, "Analysis of current injection efficiency of separate-confinement-heterostructure quantum-film lasers", IEEE J. Quantum Electron., vol. 28, pp. 68-74, 1992.
17.
J. Nagle, S. Hersee, M. Krakowiski, T. Weil and C. Weisbuch, "Threshold current of single quantum well lasers: Role of the confining layers", Appl. Phys. Lett., vol. 49, pp. 1325-1327, 1986.
18.
R. Nagarajan, T. Fukushima, M. Ishikawa, J. E. Bowers, R. S. Geels and L. A. Coldren, "Transport limit in high speed quantum well lasers: experiment and theory", IEEE Photon. Technol. Lett., vol. 4, pp. 121-123, 1992.
19.
R. Nagarajan, T. Fukushima, S. W. Corzine and J. E. Bowers, "Effects of carrier transport on high speed quantum well lasers", Appl. Phys. Lett., vol. 59, pp. 1835-1837, 1991.
20.
1. P. Kaminow and R. S. Tucker, "Mode-controlled semiconductor lasers" in Guided-Wave Optoelectronics, Berlin, Heidelberg:Springer-Verlag, 1988.
21.
K. Hall, E. P. Ippen and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP optical amplifiers", Appl. Phys. Lett., vol. 56, pp. 1740-1742, 1990.
22.
M. Asada, M. Yamada and Y. Suematsu, "Density matrix theory of semiconductor lasers with relaxation broadening" in Optical Devices and Fibers, Amsterdam:North-Holland, vol. 17, pp. 58-72, 1985/1986.
23.
W. F. Sharfin, J. Schlafer, W. Reidout, B. Elman, R. B. Lauer, J. LaCourse, et al., "Anomalously high damping in strained InGaAs-GaAs single quantum well laser", IEEE Photon. Technol. Lett., vol. 3, pp. 193-195, 1991.
24.
J. M. Wiesenfeld, A. H. Gnauck, G. Raybon and U. Koren, "Highspeed multiple quantum well optical power amplifier", IEEE Photon. Technol. Lett., vol. 4, pp. 708-711, 1992.
25.
J. E. Bowers, B. R. Hemenway, A. H. Gnauck and D. P. Wilt, "High-speed InGaAsP constricted-mesa lasers", IEEE J. Quantum Electron., vol. 22, pp. 833-843, 1986.
26.
T. L. Koch and U. Koren, Semiconductor Lasers for coherent optical fiber communications, vol. 8, no. 3, pp. 274-293, 1990.
27.
I. F. Lealman, M. Bagely, D. M. Cooper, N. Fletcher, M. Harlow, S. D. Perrin, et al., "Wide bandwidth multiple quantum well 1.55 μm lasers", Electron. Lett., vol. 27, no. 13, pp. 1191-1193, 1991.