Abstract:
A model is presented that calculates the equilibrium lubricant thickness on a slider, resulting from a steady state where net inflow from disk evaporation equals net outf...Show MoreMetadata
Abstract:
A model is presented that calculates the equilibrium lubricant thickness on a slider, resulting from a steady state where net inflow from disk evaporation equals net outflow from evaporation back to the disk, and flow to the slider back end from air shear. Based on experimental vapor pressure and viscosity data, and using surface viscosity enhancement factor and disjoining pressure values available in the literature, this model predicts a transition from a flooded regime for molecular weight M/sub n/ below 1.5 kDaltons to a starved regime where slider lubricant thickness drops to a value close to zero. At the same time, lubricant accumulation to the slider back end is expected to decrease exponentially.
Published in: IEEE Transactions on Magnetics ( Volume: 39, Issue: 5, September 2003)
References is not available for this document.
Select All
1.
X. Ma, J. Chen, H. Richter, H. Tang and J. Gui, "Contribution of lubricant thickness to head-media spacing", IEEE Trans. Magn., vol. 37, pp. 1824-1826, July 2001.
2.
X. Ma, D. Kuo, J. Chen, H. Tang and J. Gui, "Effect of lubricant on flyability and read-write performance in the ultra-low flying regime", J. Tribol., vol. 124, pp. 259, 2002.
3.
J. Gui and B. Marchon, "Fly/stiction: Mechanical instability of a head/disc interface", IEEE Trans. Magn., vol. 34, pp. 1804-1806, July 1998.
4.
V. Raman, D. Jen, D. Gillis and R. Wolter, "Component level investigations of liquid accumulation on slider—fly stiction", IEEE Trans. Magn., vol. 35, pp. 2412-2414, Sept. 1999.
5.
C. M. Mate, "Application of disjoining and capillary-pressure to liquid lubricant films in magnetic recording", J. Appl. Phys., vol. 72, pp. 3084, 1992.
6.
R. J. Waltman, G. W. Tyndall and J. Pacansky, "Computer-modeling study of the interactions of Zdol with amorphous carbon surfaces", Langmuir, vol. 15, pp. 6470, 1999.
7.
R. J. Waltman, A. Khurshudov and G. W. Tyndall, "Autophobic dewetting of perfluoropolyether films on amorphous nitrogenated carbon surfaces", Trib. Lett., vol. 12, pp. 163, 2002.
8.
G. W. Tyndall, T. E. Karis and M. S. Jhon, "Spreading profiles of molecularly thin perfluoropolyether films", Trib. Trans., vol. 42, pp. 463, 1999.
9.
H. I. Kim, C. M. Mate, K. A. Hannibal and S. S. Perry, "How disjoining pressure drives the dewetting of a polymer film on a silicon surface", Phys. Rev. Lett., vol. 82, pp. 3496, 1999.
10.
S. Izumisawa and M. S. Jhon, "Stability analysis of ultra-thin lubricant films with chain-end functional groups", Trib. Lett., vol. 12, pp. 75, 2002.
11.
C. M. Mate and R. S. Wilson, "Grand unified theory of fluorocarbon polymer mobility on disk surfaces", ACS Symp., pp. 83, 2001.
12.
T. E. Karis, B. Marchon, V. Flores and M. Scarpulla, "Lubricant spin-off on rotating disks", Tribol. Lett., vol. 11, pp. 151, 2001.
13.
R. Pit, Q. H. Zeng, Q. Dai and B. Marchon, "Experimental study of lubricant-slider interactions", IEEE Trans. Magn., vol. 39, pp. 740-742, Mar. 2003.
14.
M. Scarpulla and C. M. Mate, "Air shear driven flow of thin perfluoropolyether polymer films", J. Chem. Phys., vol. 118, pp. 3368, 2003.
15.
T. E. Karis, B. Marchon and D. A. Hopper, "Perfluoropolyether characterization by nuclear magnetic resonance spectroscopy and gel permeation chromatography", J. Fluor. Chem., vol. 118, pp. 81, 2002.
16.
J. Gui and B. Marchon, High Molecular Weight Fractionated Lubricant for Use with Thin Film Magnetic Media, Aug. 2000.