Abstract:
The finite-difference time-domain method is applied to simulate three-dimensional subsurface-scattering problems, involving a ground-penetrating radar (GPR) model consist...Show MoreMetadata
Abstract:
The finite-difference time-domain method is applied to simulate three-dimensional subsurface-scattering problems, involving a ground-penetrating radar (GPR) model consisting of two transmitters and a receiver. The receiving antenna is located in the middle of the two identical transmitters, which are fed 180/spl deg/ out of phase. This configuration implies the existence of a symmetry plane in the middle of two transmitters and the cancellation of the direct signals coupled from the transmitters at the receiver location. The antenna polarizations and their separations are arbitrary. The transmitter-receiver-transmitter configured GPR model is optimized in terms of the scattered energy observed at the receiver by varying the antenna separation. Many simulation results are used to demonstrate the effects of the antenna separation and the optimal separation encountered for a specific target and GPR scenario.
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 51, Issue: 3, March 2003)