Abstract:
The diffraction of TE- and TM-polarized plane waves by planar gratings is numerically analyzed using a combined finite-element-method/method-of-moments (FEM/MoM) algorith...Show MoreMetadata
Abstract:
The diffraction of TE- and TM-polarized plane waves by planar gratings is numerically analyzed using a combined finite-element-method/method-of-moments (FEM/MoM) algorithm based on the generalized network formulation. The interior region, treated using the FEM, is truncated to a single unit cell with the introduction of an exact periodic boundary condition, which is enforced as a natural boundary condition. Using the FEM to compute the fields within the periodic structure allows gratings of arbitrary cross section and material composition to be efficiently modeled.<>
Published in: IEEE Transactions on Microwave Theory and Techniques ( Volume: 40, Issue: 2, February 1992)
DOI: 10.1109/22.120110
References is not available for this document.
Select All
1.
Electromagnetic Theory of Gratings, New York:Springer-Verlag, 1980.
2.
T. Gaylord and M. Moharam, "Analysis and applications of optical diffraction by gratings", Proc. IEEE, vol. 73, pp. 894-937, May 1985.
3.
M. Moharam and T. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction", J. Optical Society of America, vol. 71, pp. 811-818, July 1981.
4.
R. S. Chu and J. A. Kong, "Modal theory of spatially periodic media", IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp. 18-24, Jan. 1977.
5.
M. Neviere, M. Cadilhac and R. Petit, "Contribution a letude theorique de linfluence dune couch dielectrique sur lefficacite dun reseau infiniment conducteur", Optics Communications, vol. 6, pp. 34-37, Sept. 1972.
6.
R. C. Hall, R. Mittra and K. M. Mitzner, "Scattering from finite thickness resistive strip gratings", IEEE Trans. Antennas Propagat., vol. 36, pp. 504-510, Apr. 1988.
7.
R. E. Jorgenson and R. Mittra, "Oblique scattering from lossy strip structures with one-dimensional periodicity", IEEE Trans. Antennas Propagat., vol. 38, pp. 212-219, Feb. 1990.
8.
J. P. Montgomery, "Scattering by an infinite array of multiple parallel strips", IEEE Trans. Antennas Propagat., vol. AP-27, pp. 798-807, Nov. 1979.
9.
K. Kobayashi and K. Miura, "Diffraction of a plane wave by a thick strip grating", IEEE Trans. Antennas Propagat., vol. 37, pp. 459-470, Apr. 1989.
10.
M. Moaveni, "Analysis of transmission gratings by the method of finite elements", Proc. IEE, vol. 126, pp. 35-40, Jan. 1979.
11.
M. Moaveni, "Plane-wave scattering by gratings of conducting cylinders embedded in an inhomogeneous and lossy dielectric", J. Optical Society of America, vol. 5, pp. 834-842, June 1988.
12.
S. Gedney and R. Mittra, "Analysis of the electromagnetic scattering by thick gratings using a combined FEM/MoM solution", IEEE Trans. Antennas Propagat., vol. 39, pp. 1605-1614, Nov. 1991.
13.
R. F. Harrington and J. R. Mautz, "A generalized network formulation for aperture problems", IEEE Trans. Antennas Propagat., vol. AP-24, pp. 870-873, Nov. 1976.
14.
A. Papoulis, The Fourier Integral and Its Application, NY, New York:McGraw-Hill, 1962.
15.
S. C. Eisenstat, M. C. Gursky, M. H. Schultz and A. H. Sherman, "Yale sparse matrix package. 1: The symmetric codes", Inter. J. Numerical Methods in Engineering, vol. 18, pp. 1145-1151, 1982.