Abstract:
This paper presents an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive proc...Show MoreMetadata
Abstract:
This paper presents an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a sufficiently large neighborhood of known samples. The estimates of the unknown samples are obtained by minimizing the sum of squares of the residual errors that involve estimates of the autoregressive parameters. A statistical analysis shows that, for a burst of lost samples, the expected quadratic interpolation error per sample converges to the signal variance when the burst length tends to infinity. The method is in fact the first step of an iterative algorithm, in which in each iteration step the current estimates of the missing samples are used to compute the new estimates. Furthermore, the feasibility of implementation in hardware for real-time use is established. The method has been tested on artificially generated auto-regressive processes as well as on digitized music and speech signals.
Published in: IEEE Transactions on Acoustics, Speech, and Signal Processing ( Volume: 34, Issue: 2, April 1986)
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Discrete-time ,
- Autoregressive Model ,
- Sum Of Squares ,
- Unknown Samples ,
- Speech Signal ,
- Autoregressive Parameter ,
- Interpolation Error ,
- First Step Of The Algorithm ,
- Adaptive Method ,
- Expectation Maximization ,
- Patterns Of Samples ,
- Interpolation Method ,
- Digital Signal ,
- Examples Of Methods ,
- Probability Vector ,
- Speech Sounds ,
- Significant Method ,
- Gaussian Density ,
- Experience Of The Authors ,
- Digital Audio ,
- Interpolation Results ,
- Autocorrelation Method ,
- Toeplitz Matrix ,
- Realizations Of Process ,
- Suboptimal Approach ,
- Speech Spectrum ,
- Spectral Energy ,
- True Predictions ,
- Probability Density Function ,
- Convergence Rate
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Discrete-time ,
- Autoregressive Model ,
- Sum Of Squares ,
- Unknown Samples ,
- Speech Signal ,
- Autoregressive Parameter ,
- Interpolation Error ,
- First Step Of The Algorithm ,
- Adaptive Method ,
- Expectation Maximization ,
- Patterns Of Samples ,
- Interpolation Method ,
- Digital Signal ,
- Examples Of Methods ,
- Probability Vector ,
- Speech Sounds ,
- Significant Method ,
- Gaussian Density ,
- Experience Of The Authors ,
- Digital Audio ,
- Interpolation Results ,
- Autocorrelation Method ,
- Toeplitz Matrix ,
- Realizations Of Process ,
- Suboptimal Approach ,
- Speech Spectrum ,
- Spectral Energy ,
- True Predictions ,
- Probability Density Function ,
- Convergence Rate