Abstract:
The performance of a coaxially fed monopole element is analyzed for an infinite array environment in a parallel plate guide. The analysis takes into account the geometry ...Show MoreMetadata
Abstract:
The performance of a coaxially fed monopole element is analyzed for an infinite array environment in a parallel plate guide. The analysis takes into account the geometry of the coaxial feed. Expressions for active admittance, coupling coefficients, and element patterns are given.<>
Published in: IEEE Transactions on Antennas and Propagation ( Volume: 36, Issue: 4, April 1988)
DOI: 10.1109/8.1133
References is not available for this document.
Select All
1.
B. Tomasic and A. Hessel, "Linear phased array of coaxially-fed monopole elements in a parallel plate guide", IEEE/AP-S Symp. Digest, pp. 144, 1982.
2.
B. Tomasic and A. Hessel, "Linear phased array of coaxially-fed monopole elements in a parallel plate waveguide—experiment", IEEE/AP-S Symp. Digest, pp. 23, 1985.
3.
B. Tomasic and A. Hessel, "Arrays of coaxially-fed monopole elements in a parallel plate waveguide", Phased Arrays 1985 Symp. Proc., pp. 223-250, 1985-Aug.
4.
B. Tomasic and A. Hessel, Linear phased array of coaxially-fed monopole elements in a parallel plate waveguide, 1988.
5.
A. G. Williamson and D. V. Otto, "Coaxially fed hollow cylindrical monopole in a rectangular waveguide", Electron. Lett., vol. 9, pp. 218-220, 1973.
6.
A. G. Williamson, "Radial line/coaxial line junctions: analysis and equivalent circuits", Int. J. Electronics, vol. 58, no. 1, pp. 91-104, 1985.
7.
B. Tomasic and A. Hessel, "Linear array of coaxially-fed monopole elements in a parallel plate waveguide—Part II: Experiment", IEEE Trans. Antennas Propagat., pp. 463-467.
8.
B. Tomasic and A. Hessel, "Electric and magnetic current sources in the parallel plate waveguide", IEEE Trans. Antennas Propagat., vol. AP-35, pp. 1307-1310, Nov. 1987.
9.
N. Amitay, V. Galindo and C. P. Wu, Theory and Analysis of Phased Arrays, New York:Wiley, pp. 22, 1987.
10.
L. Infeld, "On some series of Bessel functions", J. Math. Phys., vol. 26, pp. 22, 1974.
11.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, US Dep. of Commerce, Nat. Bureau of Standards, June 1964.
12.
S. W. Lee, W. R. Jones and J. J. Campbell, "Convergence of numerical solution of iris type discontiniuty problems", Antennas and Propagation Symp. Digest, 1970-Sept.