Heterodyne and Coherent Optical Fiber Communications: Recent Progress | IEEE Journals & Magazine | IEEE Xplore

Heterodyne and Coherent Optical Fiber Communications: Recent Progress


Abstract:

The technical significance, history of research and development, relevant technical tasks, and recent progress in heterodyne and coherent optical fiber communications are...Show More

Abstract:

The technical significance, history of research and development, relevant technical tasks, and recent progress in heterodyne and coherent optical fiber communications are described. The achievements of 1-MHz frequency stability (peak-to-peak) and 0.1-MHz spectral purity (3-dB spectral width) with semiconductor lasers have been two principal motivations that accelerated the research and development. Rapid progress in the single-polarization single-mode fiber technology is also encouraging. The bit-error rate of a PCM-ASK/heterodyne optical communication system has been measured as a function of the received signal level, showing a good error performance close to the quantum-noise limitation.
Published in: IEEE Transactions on Microwave Theory and Techniques ( Volume: 30, Issue: 8, August 1982)
Page(s): 1138 - 1149
Date of Publication: 06 January 2003

ISSN Information:

References is not available for this document.

Select All
1.
T. Okoshi, "Heterodyne-type optical fiber communications", Third IOOC Int. Conf. Integrated Opt. Optical Fiber Commun. Tech. Dig., pp. 44.
2.
T. Okoshi and K. Kikuchi, "Heterodyne-type optical fiber communications", J Opt. Comm., vol. 2, pp. 82-88, Sept. 1981.
3.
O. E. DeLange, "Wideband optical communication systems: Part II — Frequency division multiplexing", Proc. IEEE, vol. 58, pp. 1683-1690, Oct. 1970.
4.
T. Okoshi, Feasibility study of frequency-division multiplexing optical fiber communication systems using optical heterodyne or homodyne schemes, Feb. 1979.
5.
T. Okoshi, K. Emura, K. Kikuchi and R. T. Kersten, "Computation of bit-error rate of various heterodyne and coherent-type optical communication schemes", J. Opt. Comm., vol. 2, no. 3, pp. 89-96, Sept. 1981.
6.
Y. Yamamoto, "Receiver performance evaluation of various digital optical modulation-demodulation syst. in the 0.5-10-μm-wavelength region", IEEE J. Quantum Electron., vol. QE-16, pp. 1251-1259, Nov 1980.
7.
D. Marcuse, "6" in Engineering Quantum Electronics, New York:Harcourt Brace, 1970.
8.
S. Stem and J. J. Jones, Modern Communication Principles, New York:McGraw Hill, 1965.
9.
R. G. Smith and S. D. Personick, "Receiver design for optical fiber communication system" in Semiconductor Devices for Optical Communication, Berlin:Springer, 1980.
10.
Y. Yamamoto and T. Kimura, "Coherent optical fiber transmission systems", IEEE J. Quantum Electron., vol. QE-17, pp. 919-935, June 1981.
11.
F. Favre, L. Jeunhomme, I. Joindot, M. Monerie and J. C. Simon, "Progress towards heterodyne-type single-mode fiber communication syst.", IEEE J. Quantum Electron., vol. QE-17, pp. 897-906, June 1981.
12.
T. Okoshi and K. Kikuchi, "Frequency stabilization of semiconductor lasers for heterodyne-type optical communication schemes", Electron Lett., vol. 16, pp. 179-181, Feb. 1980.
13.
K. Kikuchi, T. Okoshi and M. Kawanishi, "Achievement of 1 MHz frequency stability of semiconductor lasers with double-stage AFC scheme", Electron Lett, vol. 17, pp. 515-516, July 1981.
14.
F. Favre and D. LeGuen, "High frequency stability of laser diode for heterodyne communication systems", Electron. Lett., vol. 16, pp. 709-710, Aug. 1980.
15.
F Favre and D. LeGuen, "Laser diode emitter for heterodyne-type communication systems", Third IOOC Int. Conf. Integrated Opt. Optical Fiber Commun. Tech. Dig., pp. 34.
16.
H. Tsuchida, M. Ohtsu and T. Tako, Frequency stabilization of AlGaAs semiconductor lasers to the absorption line of water vapor, Sept. 1981.
17.
H. Hori, Frequency stabilization of a diode laser on a saturated absorption spectrum, Sept 1981.
18.
T. Yabuzaki, " Frequency locking of a GaAlAs laser to a Doppler-free spectrum of the Cs-D 2 line ", Japan J. Appl. Phys., vol. 20, no. 6, pp. L451-L454, June 1981.
19.
H. Tsuchida, M. Ohtsu and T Tako, "Frequency stabilization of AlGaAs DH lasers", Japan J. Appl. Phys., vol. 20, pp. L403-L406, June 1981.
20.
T. Okoshi, K Kikuchi and A Nakayama, "Novel method for high resolution measurement of laser output spectrum", Electron. Lett., vol. 16, pp. 630-631, July 1980.
21.
S. Saito and Y. Yamamoto, "Direct observation of Lorentzian line-shape of semiconductor laser and linewidth reduction with external grating feedback", Electron. Lett., vol. 17, pp. 325-327, Apr. 1981.
22.
K. Kikuchi and T. Okoshi, "Simple formula giving spectrum narrowing ratio of semiconductor-laser output obtained by optical feedback", Electron. Lett., vol. 18, pp. 10-11, Jan. 1982.
23.
R. Ulrich, "Polarization stabilization on single-mode fiber", Appl. Phys. Lett., vol. 35, no. 12, pp. 840-842, Dec. 1979.
24.
M Kubota, T. Ohhara, K Furuya and Y. Suematsu, "Electrooptical polarization control on single-mode optical fibers", Electron. Lett., vol. 16, no. 15, pp. 573, July 1980.
25.
H. C. LeFevre, "Single-mode fiber fractional wave devices and polarization controllers", Electron. Lett., vol. 16, no. 20, pp. 778-780, Sept. 1980.
26.
T. Okoshi, "Single-polarization single-mode optical fibers", IEEE J. Quantum Electron, vol. QE-17, pp. 879-884, June 1981.
27.
T. Okoshi and K. Oyamada, "Single-polarization single-mode optical fiber with refractive-index pits on both sides of core", Electron. Lett., vol. 16, no. 18, pp. 712-713, Aug. 1980.
28.
T. Hosaka, K. Okamoto, Y. Sasaki and T. Edahiro, "Single-mode fibers with asymmetrical refractive-index pits on both sides of core", Electron Lett., vol. 17, no. 5, pp. 191-193, Mar. 1981.
29.
T. Okoshi and K. Oyamada, Proposal and analysis of side-tunnel optical fibers, July 1982.
30.
V. Ramaswamy, W. G. French and R. D. Standley, "Polarization characteristics of noncircular core single-mode fiber", Appl. Opt., vol. 17, no. 18, pp. 3014-3017, Sept. 1978.

Contact IEEE to Subscribe

References

References is not available for this document.