Effect of Inclined Magnetic Field on Stokes Flow Through In-Phase Slip-Patterned Microchannel Using Boundary Element Method | IEEE Conference Publication | IEEE Xplore

Effect of Inclined Magnetic Field on Stokes Flow Through In-Phase Slip-Patterned Microchannel Using Boundary Element Method


Abstract:

An investigation is conducted on a twodimensional hydrodynamic model of pressure-driven, viscous, incompressible steady creeping flow through a rectangular microchannel t...Show More

Abstract:

An investigation is conducted on a twodimensional hydrodynamic model of pressure-driven, viscous, incompressible steady creeping flow through a rectangular microchannel that features wall roughness and is influenced by an external inclined magnetic field. The Stokes equations, incorporating the Lorentz force term, are numerically solved using the boundary element method. The wall roughness is mathematically modeled using alternate Navier’s slip and noslip boundary conditions on the surfaces. We investigated streamline contour plots, flow profiles, shear stresses, and pressure gradients for varying the assumed dimensionless parameters to get a complete comprehension of fluid physics. The proposed study has various significant implementations, including regulating and enhancing the mixing and thermal removal inside micro-scaled devices.
Date of Conference: 09-11 December 2024
Date Added to IEEE Xplore: 18 February 2025
ISBN Information:
Conference Location: Dubai, United Arab Emirates
References is not available for this document.

I. Introduction

The phenomenon of flow through channels is observed in various domains within the field of fluid mechanics. The existing body of literature has a significant volume of research papers that investigate a wide range of flow conditions, each matching distinct physical scenarios. Various studies considers the Stokes flow within cavities, pipes, and channels [1]–[4]. Stokes flow shows many practical implications in a wide range of real-world scenarios, including polymer processing, dentistry [5], microfluidic devices [6], and microcirculation [7].

Select All
1.
N. Liron and S. Mochon, "Stokes flow for a stokeslet between two parallel flat plates", J. Eng. Math., vol. 10, no. 4, pp. 287-303, 1976.
2.
V. V. Melesh’ko, "Steady Stokes flow in a rectangular cavity", Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 452, no. 1952, pp. 1999-2022, 1996.
3.
A. E. Løvgren, Y. Maday and E. M. Rønquist, "A reduced basis element method for the steady Stokes problem: Application to hierarchical flow systems", Model. Identif. Control, vol. 27, no. 2, pp. 79-94, 2006.
4.
C. Pozrikidis, "Stokes flow through a permeable tube", Arch. Appl. Mech., vol. 80, no. 4, pp. 323-333, 2010.
5.
P. H. Gaskell, M. D. Savage, J. L. Summers and H. M. Thompson, "Stokes flow in closed rectangular domains", Appl. Math. Model., vol. 22, no. 9, pp. 727-743, 1998.
6.
L. Y. Yeo, H. C. Chang, P. P. Y. Chan and J. R. Friend, "Microfluidic devices for bioapplications", Small, vol. 7, no. 1, pp. 12-48, 2011.
7.
T. W. Secomb, "Blood Flow in the Microcirculation", Annu. Rev. Fluid Mech., vol. 49, pp. 443-461, 2017.
8.
C. Claude-Louis, Louis Navier Navier and C. Darve, "Memoire sur Memoire sur les les lois du lois du mouvement mouvement des des fluides fluides", Mem. Acad. Sci Inst. Fr., vol. 6, pp. 389-440, 1823, [online] Available: https://www.researchgate.net/publication/246803279_Memoire_sur_les_lois_mouvement_des_fluides.
9.
H. Helmholtz and G. Piotrowski, "Uber friction tropfbarer fluid’s", Proc Imp Acad Sci, vol. 40, pp. 607-58, 1860.
10.
Y. Zhu and S. Granick, "Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces", Phys. Rev. Lett., vol. 87, no. 9, pp. 14, 2001.
11.
Y. Zhu and S. Granick, "Limits of the Hydrodynamic No-Slip Boundary Condition", Phys. Rev. Lett., vol. 88, no. 10, pp. 4, 2002.
12.
H. Brenner, "Beyond the no-slip boundary condition", Phys. Rev. E - Stat. Nonlinear Soft Matter Phys, vol. 84, no. 4, 2011.
13.
P. Luchini, "Linearized no-slip boundary conditions at a rough surface", J. Fluid Mech., vol. 737, pp. 349-367, 2013.
14.
S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li and N. Allbritton, "Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting", Anal. Chem., vol. 74, no. 16, pp. 4117-4123, 2002.
15.
C. H. Choi and C. J. Kim, "Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface", Phys. Rev. Lett., vol. 96, no. 6, 2006.
16.
S. Helen, D. T. Joshua and F. I. Rustem, "A Microfluidic System for Controlling Reaction Networks in Time13", Angew. Chemie Int. Ed., vol. 42, no. 7, pp. 768-772, 2003, [online] Available: http://dx.doi.org/10.1002/anie200390203.
17.
V. Barbier, H. Willaime, P. Tabeling and F. Jousse, "Producing droplets in parallel microfluidic systems", Phys. Rev. E - Stat. Nonlinear Soft Matter Phys., vol. 74, no. 4, pp. 2-5, 2006.
18.
S. Kar, M. Dash, T. K. Maiti and S. Chakraborty, "Effect of hematocrit on blood dynamics on a compact disc platform", Analyst, vol. 140, no. 5, pp. 1432-1437, 2015.
19.
R. Delhi Babu and S. Ganesh, "The effects of steady magneto hydrodynamic flow between two parallel porous plates with an angular velocity", J. Adv. Res. Dyn. Control Syst., vol. 10, no. 3, pp. 1362-1367, 2018.
20.
H. Yosinobu and T. Kakutani, "Two-dimensional Stokes Flow of an Electrically Conducting Fluid in a Uniform Magnetic Field", Journal of the Physical Society of Japan, vol. 14, no. 10, pp. 14331444, 1959.
21.
C. Taylor and P. Hood, "A numerical solution of the Navier-Stokes equations using the finite element technique", Comput. Fluids, vol. 1, no. 1, pp. 73-100, 1973.
22.
M. Li, T. Tang and B. Fornberg, "A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations", Int. J. Numer. Methods Fluids, vol. 20, no. 10, pp. 1137-1151, 1995.
23.
C. S. Nishad, A. Chandra, T. Karmakar and G. P. Raja Sekhar, "A non-primitive boundary element technique for modeling flow through non-deformable porous medium using Brinkman equation", Meccanica, vol. 53, no. 9, pp. 2333-2352, 2018.
24.
V. Chhabra, C. S. Nishad and M. Sahni, "Effect of Magnetic Field on Viscous Flow through Composite Porous Channel using Boundary Element Method", J. Appl. Comput. Mech., vol. 9, no. 4, pp. 1016-1035, 2023.
25.
P. K. Yadav and S. Jaiswal, "Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar-Newtonian fluids in a porous medium", Can. J. Phys., vol. 96, no. 9, pp. 10161028, 2018.
26.
V. Chhabra, C. S. Nishad and M. Sahni, "Effect of magnetic field on viscous flow through porous wavy channel using boundary element method", ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech, vol. 104, no. 6, Jun. 2024.
27.
T. E. Tezduyar, J. Liou and D. K. Ganjoo, "Incompressible flow computations based on the vorticity-stream function and velocitypressure formulations", Comput. Struct., vol. 35, no. 4, pp. 445472, 1990.
28.
V. Chhabra, C. S. Nishad, M. Sahni and V. K. Chaurasiya, "Effect of magnetic field and hydrodynamic slippage on electro-osmotic Brinkman flow through patterned zeta potential microchannel", vol. 148, no. 1, 2024.
29.
C. S. Nishad, A. Chandra and G. P. Raja Sekhar, "Stokes Flow Inside Topographically Patterned Microchannel Using Boundary Element Method", Int. J. Chem. React. Eng., vol. 15, no. 5, pp. 117, 2017.
30.
O. R. Burggraf, "Analytical and numerical studies of the structure of steady separated flows", J. Fluid Mech, vol. 24, no. 1, pp. 113151, 1966.
Contact IEEE to Subscribe

References

References is not available for this document.