Loading web-font TeX/Main/Regular
Boost Query-Centric Network Efficiency for Multi-Agent Motion Forecasting | IEEE Journals & Magazine | IEEE Xplore

Boost Query-Centric Network Efficiency for Multi-Agent Motion Forecasting


Abstract:

Real-time multi-agent motion forecasting is essential for autonomous vehicles to safely navigate on urban roads. Recent advancements in this field exhibit the superior pe...Show More

Abstract:

Real-time multi-agent motion forecasting is essential for autonomous vehicles to safely navigate on urban roads. Recent advancements in this field exhibit the superior performance of Query-Centric Networks for large-scale data and long-term prediction. However, these methods often suffer from high space and time complexity, which limits their practicality and impedes further research. E.g., training QCNet requires 8 RTX 3090 GPUs and its inference costs more than 100 ms for a single busy scene. This is primarily due to the heavy spatial attention layers in the encoder and redundant queries for each modal prediction in the decoder. This letter proposes an Efficient Query-Centric Network, i.e., EQNet, for multi-agent motion forecasting. EQNet employs a state-space-model (SSM) for temporal motion encoding, and introduces a cascade decoder structure which shares the queries among all motion modalities for spatial attention. Our research shows three important nuggets: First, placing spatial attention layers in the decoder exhibits greater efficiency than in the encoder. Second, SSMs serve as highly efficient temporal motion encoders. Finally, cascade decoders demonstrate efficiency as multi-modal motion decoders. These innovations significantly reduce virtual memory usage (\sim 4 × reduction) and improve processing speed (up to 2 × speedup), without significant sacrifice of performance on the Argoverse 2 benchmark.
Published in: IEEE Robotics and Automation Letters ( Volume: 10, Issue: 4, April 2025)
Page(s): 3118 - 3125
Date of Publication: 06 February 2025

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Predicting future motion of road users is crucial for safe and social-friendly driving of autonomous vehicle (AV) [1].

Select All
1.
V. Bharilya and N. Kumar, "Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey challenges and future research directions", Veh. Commun., vol. 46, Apr. 2024.
2.
N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat and B. Sapp, "Wayformer: Motion forecasting via simple & efficient attention networks", Proc. 2023 IEEE Int. Conf. Robot. Automat., pp. 2980-2987, 2022.
3.
B. Varadarajan et al., "Multipath : Efficient information fusion and trajectory aggregation for behavior prediction", Proc. 2022 Int. Conf. Robot. Automat., pp. 7814-7821, 2021.
4.
X. Wang, T. Su, F. Da and X. Yang, "ProphNet: Efficient agent-centric motion forecasting with anchor-informed proposals", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 2980-2987, 2023.
5.
A. Cui, S. Casas, K. Wong, S. Suo and R. Urtasun, "Gorela: Go relative for viewpoint-invariant motion forecasting", Proc. IEEE Int. Conf. Robot., pp. 7801-7807, 2023.
6.
Z. Zhou, J. Wang, Y.-H. Li and Y.-K. Huang, "Query-centric trajectory prediction", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 17863-17873, 2023.
7.
Y. Sun et al., "Retentive network: A successor to transformer for large language models", 2023.
8.
A. Gu, K. Goel and C. R'e, "Efficiently modeling long sequences with structured state spaces", Proc. Int. Conf. Learn. Representations, 2022.
9.
R. Waleffe et al., "An empirical study of Mamba-based language models", 2024.
10.
J. Su, M. Ahmad, Y. Lu, S. Pan, W. Bo and Y. Liu, "Roformer: Enhanced transformer with rotary position embedding", Neurocomputing, vol. 568, 2024.
11.
R. Huang, H. Xue, M. Pagnucco, F. D. Salim and Y. Song, "Multimodal trajectory prediction: A survey", 2023.
12.
A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese and A. Alahi, "Social GAN: Socially acceptable trajectories with generative adversarial networks", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 2255-2264, 2018.
13.
Y. Yuan, X. Weng, Y. Ou and K. Kitani, "Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting", Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 9793-9803, 2021.
14.
P. Xu, J.-B. Hayet and I. Karamouzas, "Context-aware timewise VAEs for real-time vehicle trajectory prediction", IEEE Robot. Automat. Lett., vol. 8, no. 9, pp. 5440-5447, Sep. 2023.
15.
R. Liang, Y. Li, J. Zhou and X. Li, "STGlow: A flow-based generative framework with dual graphormer for pedestrian trajectory prediction", IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 11, pp. 16504-16517, Nov. 2024.
16.
T. Westny, B. Olofsson and E. Frisk, "Diffusion-based environment-aware trajectory prediction", 2024.
17.
H. Liu, Z. Huang and C. Lv, "Multi-modal hierarchical transformer for occupancy flow field prediction in autonomous driving", Proc. IEEE Int. Conf. Robot. Automat., pp. 1449-1455, 2023.
18.
R. Mahjourian, J. Kim, Y. Chai, M. Tan, B. Sapp and D. Anguelov, "Occupancy flow fields for motion forecasting in autonomous driving", IEEE Robot. Automat. Lett., vol. 7, no. 2, pp. 5639-5646, Apr. 2022.
19.
J. Gu, C. Sun and H. Zhao, "DenseTNT: End-to-end trajectory prediction from dense goal sets", Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 15283-15292, 2021.
20.
X. Chen, F. Luo, F. Zhao and Q. Ye, "Goal-guided and interaction-aware state refinement graph attention network for multi-agent trajectory prediction", IEEE Robot. Automat. Lett., vol. 9, no. 1, pp. 57-64, Jan. 2024.
21.
C. Zhang, H. Sun, C. Chen and Y.-R. Guo, "Technical report for Argoverse2 Challenge 2022 - Motion forecasting task", 2022.
22.
C. Zhang, H. Sun, C. Chen and Y. Guo, "Banet: Motion forecasting with boundary aware network", 2022.
23.
S. Shi, L. Jiang, D. Dai and B. Schiele, "Motion transformer with global intention localization and local movement refinement", Adv. Neural Inf. Process. Syst., vol. 35, pp. 6531-6543, 2022.
24.
M. Wang et al., "GANet: Goal area network for motion forecasting", Proc. IEEE Int. Conf. Robot. Automat., pp. 1609-1615, 2023.
25.
M. Ye, J. Xu, X. Xu, T. Cao and Q. Chen, "DCMS: Motion forecasting with dual consistency and multi-pseudo-target supervision", 2022.

Contact IEEE to Subscribe

References

References is not available for this document.