Loading [MathJax]/extensions/MathMenu.js
Dual Bidirectional Feature Enhancement Network for Continuous Space-Time Video Super-Resolution | IEEE Journals & Magazine | IEEE Xplore

Dual Bidirectional Feature Enhancement Network for Continuous Space-Time Video Super-Resolution


Abstract:

Space-time video super-resolution aims to reconstruct the high-frame-rate and high-resolution video from the corresponding low-frame-rate and low-resolution counterpart. ...Show More

Abstract:

Space-time video super-resolution aims to reconstruct the high-frame-rate and high-resolution video from the corresponding low-frame-rate and low-resolution counterpart. Currently, the task faces the challenge of efficiently extracting long-range temporal information from available frames. Meanwhile, existing methods can only produce results for a specific moment and cannot interpolate high-resolution frames for consecutive time stamps. To address these issues, we propose a multi-stage feature enhancement method that better utilizes the limited spatio-temporal information subject to the efficiency constraint. Our approach involves a pre-alignment module that extracts coarse aligned features from the adjacent odd-numbered frames in the first stage. In the second stage, we use a bidirectional recurrent module to refine the aligned features by exploiting the long-range information from all input frames while simultaneously performing video frame interpolation. The proposed video frame interpolation module concatenates temporal information with spatial features to achieve continuous interpolation, which refines the interpolated feature progressively and enhances the spatial information by utilizing the features of different scales. Extensive experiments on various benchmarks demonstrate that the proposed method outperforms state-of-the-art in both quantitative metrics and visual effects.
Published in: IEEE Transactions on Computational Imaging ( Volume: 11)
Page(s): 228 - 236
Date of Publication: 29 January 2025

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

With the development of convolution neural networks (CNNs), the task of space-time video super-resolution (STVSR) has achieved considerable performance. Different from the video super-resolution (VSR), the goal of STVSR is to reconstruct high-frame-rate (HFR) and high-resolution (HR) videos from corresponding low-frame-rate (LFR) and low-resolution (LR) counterparts. STVSR has the potential to be used in a wide range of practical applications and thus has gained increasing interest among academia and industry.

Select All
1.
W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao and M.-H. Yang, "Depth-aware video frame interpolation", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 3703-3712, 2019.
2.
H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller and J. Kautz, "Super slomo: High quality estimation of multiple intermediate frames for video interpolation", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 9000-9008, 2018.
3.
S. Niklaus, L. Mai and F. Liu, "Video frame interpolation via adaptive separable convolution", Proc. IEEE Int. Conf. Comput. Vis., pp. 261-270, 2017.
4.
M. Haris, G. Shakhnarovich and N. Ukita, "Recurrent back-projection network for video super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 3897-3906, 2019.
5.
X. Wang, K. C. K. Chan, K. Yu, C. Dong and C. C. Loy, "EDVR: Video restoration with enhanced deformable convolutional networks", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops, pp. 1954-1963, 2019.
6.
Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong and Y. Fu, "Image super-resolution using very deep residual channel attention networks", Proc. Eur. Conf. Comput. Vis., pp. 286-301, 2018.
7.
Y. Tian, Y. Zhang, Y. Fu and C. Xu, "TDAN: Temporally-deformable alignment network for video super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 3360-3369, 2020.
8.
L. Wei, Y. Guo, Z. Lin, X. Deng and W. An, "Learning for video super-resolution through HR optical flow estimation", Proc. Asian Conf. Comput. Vis., pp. 514-529, 2018.
9.
K. C. K Chan, X. Wang, K. Yu, C. Dong and C. C. Loy, "BasicVSR: The search for essential components in video super-resolution and beyond", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 4947-4956, 2021.
10.
S. Niklaus and F. Liu, "Softmax splatting for video frame interpolation", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 5437-5446, 2020.
11.
T. Xue, B. Chen, J. Wu, D. Wei and W. T. Freeman, "Video enhancement with task-oriented flow", Int. J. Comput. Vis., vol. 127, pp. 1106-1125, 2019.
12.
X. Xiang, Y. Tian, Y. Zhang, Y. Fu, J. P. Allebach and C. Xu, "Zooming Slow-Mo: Fast and accurate one-stage space-time video super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 3370-3379, 2020.
13.
G. Xu, J. Xu, Z. Li, L. Wang, X. Sun and M.-M. Cheng, "Temporal modulation network for controllable space-time video super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 6388-6397, 2021.
14.
Z. Geng, L. Liang, T. Ding and I. Zharkov, "RSTT: Real-time spatial temporal transformer for space-time video super-resolution", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 17441-17451, 2022.
15.
M. Hu, K. Jiang, Z. Nie and Z. Wang, "You only align once: Bidirectional interaction for spatial-temporal video super-resolution", Proc. 30th ACM Int. Conf. Multimedia, pp. 847-855, 2022.
16.
C. You, L. Han, A. Feng, R. Zhao, H. Tang and W. Fan, "Megan: Memory enhanced graph attention network for space-time video super-resolution", Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., pp. 1401-1411, 2022.
17.
Z. Wang, J. Chen and S. C. H. Hoi, "Deep learning for image super-resolution: A survey", IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10, pp. 3365-3387, Oct. 2021.
18.
T. Wang et al., "A survey of deep face restoration: Denoise super-resolution deblur artifact removal", 2022.
19.
W. Niu, K. Zhang, W. Luo and Y. Zhong, "Blind motion deblurring super-resolution: When dynamic spatio-temporal learning meets static image understanding", IEEE Trans. Image Process., vol. 30, pp. 7101-7111, 2021.
20.
A. Kappeler, S. Yoo, Q. Dai and A. K. Katsaggelos, "Video super-resolution with convolutional neural networks", IEEE Trans. Comput. Imag., vol. 2, no. 2, pp. 109-122, Jun. 2016.
21.
A. Lucas, S. Lopez-Tapia, R. Molina and A. K. Katsaggelos, "Generative adversarial networks and perceptual losses for video super-resolution", IEEE Trans. Image Process., vol. 28, no. 7, pp. 3312-3327, Jul. 2019.
22.
Y. Jo, S. W. Oh, J. Kang and S. J. Kim, "Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3224-3232, 2018.
23.
S. Y. Kim, J. Lim, T. Na and M. Kim, "Video super-resolution based on 3D-CNNs with consideration of scene change", Proc. IEEE Int. Conf. Image Process., pp. 2831-2835, 2019.
24.
Y. Huang, W. Wang and L. Wang, "Bidirectional recurrent convolutional networks for multi-frame super-resolution", Proc. 28th Int. Conf. Neural Inf. Process. Syst., vol. 1, pp. 235-243, 2015.
25.
Y. Huang, W. Wang and L. Wang, "Video super-resolution via bidirectional recurrent convolutional networks", IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 1015-1028, Apr. 2018.
26.
J. Guo and H. Chao, "Building an end-to-end spatial-temporal convolutional network for video super-resolution", Proc. 31st AAAI Conf. Artif. Intell., pp. 4053-4060, 2017.
27.
P. Yi, Z. Wang, K. Jiang, J. Jiang, T. Lu and J. Ma, "A progressive fusion generative adversarial network for realistic and consistent video super-resolution", IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 5, pp. 2264-2280, May 2022.
28.
W. Li, X. Tao, T. Guo, L. Qi, J. Lu and J. Jia, "Mucan: Multi-correspondence aggregation network for video super-resolution", Eur. Conf. Comput. Vis., pp. 335-351, 2020.
29.
K. Sun, M. Koch, Z. Wang, S. Jovanovic, H. Rabah and S. Simon, "An FPGA-based residual recurrent neural network for real-time video super-resolution", IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 4, pp. 1739-1750, Apr. 2022.
30.
A. Dosovitskiy et al., "Flownet: Learning optical flow with convolutional networks", Proc. IEEE Int. Conf. Comput. Vis., pp. 2758-2766, 2015.

Contact IEEE to Subscribe

References

References is not available for this document.