Loading [MathJax]/extensions/MathMenu.js
Design of Downlink Hybrid NOMA Transmission | IEEE Journals & Magazine | IEEE Xplore

Design of Downlink Hybrid NOMA Transmission


Abstract:

The aim of this paper is to develop hybrid non-orthogonal multiple access (NOMA) assisted downlink transmission. First, for the single-input single-output (SISO) scenario...Show More

Abstract:

The aim of this paper is to develop hybrid non-orthogonal multiple access (NOMA) assisted downlink transmission. First, for the single-input single-output (SISO) scenario, i.e., each node is equipped with a single antenna, a novel hybrid NOMA scheme is introduced, where NOMA is implemented as an add-on of a legacy time division multiple access (TDMA) network. Because of the simplicity of the SISO scenario, analytical results can be developed to reveal important properties of downlink hybrid NOMA. For example, in the case that the users’ channel gains are ordered and the durations of their time slots are the same, downlink hybrid NOMA is shown to always outperform TDMA, which is different from the existing conclusion for uplink hybrid NOMA. Second, the proposed downlink SISO hybrid NOMA scheme is extended to the multiple-input single-output (MISO) scenario, i.e., the base station has multiple antennas. For the MISO scenario, near-field communication is considered to illustrate how NOMA can be used as an add-on in legacy networks based on space division multiple access and TDMA. Simulation results verify the developed analytical results and demonstrate the superior performance of downlink hybrid NOMA compared to conventional orthogonal multiple access.
Published in: IEEE Transactions on Wireless Communications ( Volume: 23, Issue: 12, December 2024)
Page(s): 19587 - 19602
Date of Publication: 31 October 2024

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Multiple access techniques can be viewed as the foundation stone of modern mobile networks, since the design of many crucial components of mobile networks, such as scheduling, resource allocation, channel estimation and signal detection, depends on which multiple access technique is used [1]. In the sixth-generation (6G) era, non-orthogonal multiple access (NOMA) has already received considerable attention due to its superior spectral efficiency, compared to conventional orthogonal multiple access (OMA) [2], [3], [4], [5].

Select All
1.
M. Vaezi, Z. Ding and H. V. Poor, Multiple Access Techniques for 5G Wireless Networks and Beyond, Berlin, Germany:Springer, 2019.
2.
X. You et al., "Towards 6G wireless communication networks: Vision enabling technologies and new paradigm shifts", Sci. China Inf. Sci., vol. 64, no. 1, pp. 1-74, Jan. 2021.
3.
D. Bepari et al., "A survey on applications of cache-aided NOMA", IEEE Commun. Surveys Tuts., vol. 25, no. 3, pp. 1571-1603, 3rd Quart. 2023.
4.
S. Pakravan et al., "Physical layer security for NOMA systems: Requirements issues and recommendations", IEEE Internet Things J., vol. 10, no. 24, pp. 21721-21737, Dec. 2023.
5.
X. Pei, Y. Chen, M. Wen, H. Yu, E. Panayirci and H. V. Poor, "Next-generation multiple access based on NOMA with power level modulation", IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1072-1083, Apr. 2022.
6.
S. McWade, A. Farhang and M. F. Flanagan, "Low-complexity reliability-based equalization and detection for OTFS-NOMA", IEEE Trans. Commun., vol. 71, no. 11, pp. 6779-6792, Nov. 2023.
7.
W. Feng et al., "Resource allocation for power minimization in RIS-assisted multi-UAV networks with NOMA", IEEE Trans. Commun., vol. 71, no. 11, pp. 6662-6676, Nov. 2023.
8.
L. Yuan, Q. Du, N. Yang, F. Fang and N. Yang, " Performance analysis of IRS-aided short-packet NOMA systems over Nakagami- m fading channels ", IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 8228-8233, Jun. 2023.
9.
X. Mu and Y. Liu, "Exploiting semantic communication for non-orthogonal multiple access", IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2563-2576, Aug. 2023.
10.
P. Swami, V. Bhatia, S. Vuppala and T. Ratnarajah, "User fairness in NOMA-HetNet using optimized power allocation and time slotting", IEEE Syst. J., vol. 15, no. 1, pp. 1005-1014, Mar. 2021.
11.
Z. Ding, "NOMA beamforming in SDMA networks: Riding on existing beams or forming new ones?", IEEE Commun. Lett., vol. 26, no. 4, pp. 868-871, Apr. 2022.
12.
Z. Ding, P. Fan and H. V. Poor, "Impact of user pairing on 5G non-orthogonal multiple access", IEEE Trans. Veh. Tech., vol. 65, no. 8, pp. 6010-6023, Aug. 2016.
13.
Y. Liu et al., "Evolution of NOMA toward next generation multiple access (NGMA) for 6G", IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1037-1071, Apr. 2022.
14.
J. Choi and J.-B. Seo, "Evolutionary game for hybrid uplink NOMA with truncated channel inversion power control", IEEE Trans. Commun., vol. 67, no. 12, pp. 8655-8665, Dec. 2019.
15.
J. Zheng, X. Tang, X. Wei, H. Shen and L. Zhao, "Channel assignment for hybrid NOMA systems with deep reinforcement learning", IEEE Wireless Commun. Lett., vol. 10, no. 7, pp. 1370-1374, Jul. 2021.
16.
X. Wen, H. Zhang, H. Zhang and F. Fang, "Interference pricing resource allocation and user-subchannel matching for NOMA hierarchy fog networks", IEEE J. Sel. Topics Signal Process., vol. 13, no. 3, pp. 467-479, Jun. 2019.
17.
M. Bashar et al., "On the performance of cell-free massive MIMO relying on adaptive NOMA/OMA mode-switching", IEEE Trans. Commun., vol. 68, no. 2, pp. 792-810, Feb. 2020.
18.
N. Nomikos, T. Charalambous, D. Vouyioukas, G. K. Karagiannidis and R. Wichman, "Hybrid NOMA/OMA with buffer-aided relay selection in cooperative networks", IEEE J. Sel. Topics Signal Process., vol. 13, no. 3, pp. 524-537, Jun. 2019.
19.
Q. Wang et al., "Optimizing information freshness via multiuser scheduling with adaptive NOMA/OMA", IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1766-1778, Mar. 2022.
20.
Z. Ding, D. Xu, R. Schober and H. V. Poor, "Hybrid NOMA offloading in multi-user MEC networks", IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5377-5391, Jul. 2022.
21.
L. Liu, B. Sun, Y. Wu and D. H. K. Tsang, "Latency optimization for computation offloading with hybrid NOMA-OMA transmission", IEEE Internet Things J., vol. 8, no. 8, pp. 6677-6691, Apr. 2021.
22.
Z. Ding, J. Xu, O. A. Dobre and H. V. Poor, "Joint power and time allocation for NOMA-MEC offloading", IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 6207-6211, Mar. 2019.
23.
B. Liu, C. Liu and M. Peng, "Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks", IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1015-1027, Apr. 2021.
24.
F. Fang, H. Zhang, J. Cheng and V. C. M. Leung, "Energy-efficient resource allocation for downlink non-orthogonal multiple access network", IEEE Trans. Commun., vol. 64, no. 9, pp. 3722-3732, Sep. 2016.
25.
C. Chaieb, F. Abdelkefi and W. Ajib, "Deep reinforcement learning for resource allocation in multi-band and hybrid OMA-NOMA wireless networks", IEEE Trans. Commun., vol. 71, no. 1, pp. 187-198, Jan. 2023.
26.
J. Yu, Y. Li, X. Liu, B. Sun, Y. Wu and D. H.-K. Tsang, "IRS assisted NOMA aided mobile edge computing with queue stability: Heterogeneous multi-agent reinforcement learning", IEEE Trans. Wireless Commun., vol. 22, no. 7, pp. 4296-4312, Jul. 2023.
27.
B. Li, W. Wu, W. Zhao and H. Zhang, "Security enhancement with a hybrid cooperative NOMA scheme for MEC system", IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2635-2648, Mar. 2021.
28.
H. Zhang, H. Zhang, W. Liu, K. Long, J. Dong and V. C. M. Leung, "Energy efficient user clustering hybrid precoding and power optimization in terahertz MIMO-NOMA systems", IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 2074-2085, Sep. 2020.
29.
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.:Cambridge Univ. Press, 2003.
30.
Z. Ding and H. V. Poor, "Utilizing imperfect resolution of near-field beamforming: A hybrid-NOMA perspective", IEEE Commun. Lett., vol. 28, no. 7, pp. 1718-1722, Jul. 2024.
Contact IEEE to Subscribe

References

References is not available for this document.