Abstract:
We present a theoretical study of the effect of radiation losses on the mode selectivity of DFB lasers with second-order gratings. For a second-order grating, interferenc...Show MoreMetadata
Abstract:
We present a theoretical study of the effect of radiation losses on the mode selectivity of DFB lasers with second-order gratings. For a second-order grating, interference of the radiation due to first-order diffraction of oppositely propagating guided waves cancels the radiation loss at one of the edges of the spectrum gap. This provides threshold gain discrimination of order 10 cm-1against one of the two dominant modes occurring near the edges of the gap. This should allow fabrication of DFB lasers with properties that are nearly independent of the positions of the facets relative to the grating corrugations, which are uncontrolled. By applying antireflection coatings to the two ends, differential quantum efficiencies close to those of conventional Fabry-Perot lasers should be achievable.
Published in: IEEE Journal of Quantum Electronics ( Volume: 21, Issue: 2, February 1985)
References is not available for this document.
Select All
1.
H. Kogelnik and C. V. Shank, "Stimulated emission in a period structure", Appl. Phys. Lett., vol. 18, pp. 152-154, 1971.
2.
R. F. Kazarinov and R. A. Suris, "Injection heterojunction laser with a diffraction grating on its contact surface", Sov. Phyys.-Semicond., vol. 6, pp. 1184-1189, 1973.
3.
Fiz. Tekh. Poluprov., vol. 6, pp. 1359-1365, 1972.
4.
M. Nakamura, A. Yariv, H. W. Yen, S. Smokeh and H. L. Garvin, "Optically pumped GaAs surface laser with corrugation feedback", Appl. Phys. Lett., vol. 22, pp. 515-516, 1973.
5.
C. V. Shank, R. V. Schmidt and B. I. Miller, "Double-heterostructure GaAs distributed-feedback laser", Appl. Phys. Lett., vol. 25, pp. 200-201, 1974.
6.
D. R. Scifres, R. D. Burnham and W. Streifer, "Distributed-feedback single heterojunction GaAs diode laser", Appl. Phys. Lett., vol. 25, no. 4, pp. 203-206, 1974.
7.
A. Doi, T. Fukuzawa, M. Nakamura, R. Ito and K. Aiki, "InGaAsP/ InP distributed-feedback injection lasers fabricated by one-step liquid phase epitaxy", Appl. Phys. Lett., vol. 35, pp. 441-443, Sept. 1979.
8.
K. Utaka, S. Akiba, K. Sakai and Y. Matsushima, "Room-temperature CW operation of distributed-feedback buried-heterostructure InGaAsP/InP lasers emitting at 1.57 μm", Electron. Lett., vol. 17, pp. 961-963, 1981.
9.
T. Matsuoka, H. Nagai, Y. Itaya, Y. Noguchi, U. Suzuki and T. Ikegami, "CW operation of DFB-BH GaInAsP/InP lasers in 1.5 urn wavelength region", Electron. Lett., vol. 18, pp. 27-28, 1982.
10.
Y. Itaya, T. Matsuoka, Y. Nakano, Y. Suzuki, K. Kuroiwa and T. Ikegami, "New 1.5 μm wavelength GaInAsP/InP distributed feedback lasers", Electron. Lett., vol. 18, pp. 1006-1008, 1982.
11.
O. Mikami, T. Saitoh and H. Nakagome, "New 1.5 wavelength GaInAsP/InP distributed feedback laser", Electron. Lett., vol. 18, pp. 460, 1982.
12.
M. Kitamura, M. Saki, M. Yamaguchi, I. Mito, K.. Kobayashi and K.. Kobayashi, "High power single longitudinal mode operation of 1.3 μm DFB-DC-PBH LD", Electron. Lett., vol. 19, pp. 840-841, 1983.
13.
R. F. Kazarinov, Z. N. Sakolava and R. A. Suris, "Planar distributed-feedback optical resonators", Sov. Phys.—Tech. Phys., vol. 21, pp. 130-136, 1976.
14.
W. Streifer, R. D. Burnham and D. R. Scifres, "Radiation losses in distributed feedback lasers and longitudinal mode selection", IEEE J. Quantum Electron., vol. QE-12, pp. 737-739, 1976.
15.
W. Streifer, D. R. Scifres and R. D. Burnham, "Coupled wave analysis of DFB and DBR lasers", IEEE J. Quantum Electron., vol. QE-13, pp. 134-141, 1977.
16.
W. Streifer, R. D. Burnham and D. R. Scifres, "Effect of external reflectors on longitudinal modes of distributed feedback lasers", IEEE J. Quantum Electron., vol. QE-11, pp. 154-161, 1975.
17.
G. A. Baraff, unpublished.
18.
P. M. Morse and H. Feshback, Methods of Theoretical Physics, New York:McGraw-Hill, pp. 832, 1953.