Abstract:
The problem of oscillator evolution and mode competition in free electron lasers is studied. Relativistic quantum field theory is used to calculate electron wave function...Show MoreMetadata
Abstract:
The problem of oscillator evolution and mode competition in free electron lasers is studied. Relativistic quantum field theory is used to calculate electron wave functions, the angular distribution of spontaneous emission, and the transition rates for stimulated emission and absorption in each mode. The photon rate equation for the weak-field regime is presented. This rate equation is applied to oscillator evolution with a conventional undulator, a two-stage optical klystron, and a tapered undulator. The effects of noise are briefly discussed.
Published in: IEEE Journal of Quantum Electronics ( Volume: 19, Issue: 3, March 1983)
Citations are not available for this document.
Cites in Papers - |
Cites in Papers - IEEE (3)
Select All
1.
A.V. Savilov, "Electron bunching at the doubled frequency of the input wave and the use of this effect in klystron-type frequency multiplicators", IEEE Transactions on Plasma Science, vol.32, no.3, pp.1147-1151, 2004.
2.
R. Warren, B. Newnam, J. Goldstein, "Raman spectra and the Los Alamos free-electron laser", IEEE Journal of Quantum Electronics, vol.21, no.7, pp.882-888, 1985.
3.
G. Dattoli, J. Gallardo, A. Renieri, M. Richetta, "Quantum statistical properties of an FEL amplifier", IEEE Journal of Quantum Electronics, vol.21, no.7, pp.1069-1072, 1985.
Cites in Papers - Other Publishers (26)
1.
Henry P. Freund, T. M. Antonsen,, "Introduction", Principles of Free Electron Lasers, pp.1, 2024.
2.
Peter Kling, Enno Giese, "Multiphoton processes and higher resonances in the quantum regime of the free-electron laser", Physical Review Research, vol.5, no.3, 2023.
3.
C. Moritz Carmesin, Peter Kling, Enno Giese, Roland Sauerbrey, Wolfgang P. Schleich, "Quantum and classical phase-space dynamics of a free-electron laser", Physical Review Research, vol.2, no.2, 2020.
4.
Alexander Debus, Klaus Steiniger, Peter Kling, C Moritz Carmesin, Roland Sauerbrey, "Realizing quantum free-electron lasers: a critical analysis of experimental challenges and theoretical limits", Physica Scripta, vol.94, no.7, pp.074001, 2019.
5.
H. P. Freund, T. M. Antonsen, Principles of Free Electron Lasers, pp.1, 2018.
6.
K. V. Zhukovsky, "Undulators and generation of X-ray pulses in free-electron lasers with self-amplified spontaneous emission", Moscow University Physics Bulletin, vol.72, no.2, pp.128, 2017.
7.
C. Pellegrini, A. Marinelli, S. Reiche, "The physics of x-ray free-electron lasers", Reviews of Modern Physics, vol.88, no.1, 2016.
8.
C. Pellegrini, "The history of X-ray free-electron lasers", The European Physical Journal H, vol.37, no.5, pp.659, 2012.
9.
H. MEHDIAN, M. ALIMOHAMADI, A. HASANBEIGI, "Quantum statistical properties of free-electron laser with ion-channel guiding", Journal of Plasma Physics, vol.78, no.5, pp.537, 2012.
10.
C. B. Schroeder, C. Pellegrini, P. Chen, "Quantum effects in high-gain free-electron lasers", Physical Review E, vol.64, no.5, 2001.
11.
Sungho M. Kim, Free Electron Lasers 1997, pp.470, 1998.
12.
Sungho M. Kim, "Quantum based overall frequency dependence of induced Bremsstrahlung amplification", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.407, no.1-3, pp.470, 1998.
13.
Sǒngho M. Gim, "Quantum derivation of overall free-electron laser gain dependence on photon energy", Journal of Applied Physics, vol.81, no.6, pp.2892, 1997.
14.
H. P. Freund, T. M. Antonsen, Principles of Free-Electron Lasers, pp.1, 1992.
15.
Kwang-Je Kim, "Spectral bandwidth in free-electron-laser oscillators", Physical Review Letters, vol.66, no.21, pp.2746, 1991.
16.
C. S. Chang, H. U. Fluhler, "Multi-level quantum electrodynamic calculation of spontaneous emission and small signal gain in high voltage free electron lasers", Radiation Effects and Defects in Solids, vol.122-123, no.2, pp.579, 1991.
17.
C. S. Chang, H. U. Fluhler, "Self-consistent calculation of spontaneous emission and small-signal gain in high-voltage free-electron lasers", Journal of the Optical Society of America B, vol.7, no.10, pp.2061, 1990.
18.
A. Friedman, A. Gover, G. Kurizki, S. Ruschin, A. Yariv, "Spontaneous and stimulated emission from quasifree electrons", Reviews of Modern Physics, vol.60, no.2, pp.471, 1988.
19.
I. Gjaja, A. Bhattacharjee, "Relativistic quantum dynamics and quantum noise in short-wavelength free-electron lasers", Physical Review A, vol.37, no.3, pp.1009, 1988.
20.
I. Gjaja, A. Bhattacharjee, "Relativistic quantum dynamics and quantum noise in short-wavelength free electron lasers", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.272, no.1-2, pp.293, 1988.
21.
L. Schächter, "Relativistic quantum mechanical analysis of a free electron laser", Journal of Applied Physics, vol.61, no.8, pp.2718, 1987.
22.
Julio Gea-Banacloche, "Quantum theory of the free-electron laser: Large gain, saturation, and photon statistics", Physical Review A, vol.31, no.3, pp.1607, 1985.
23.
W.B. Colson, "Tutorial on classical free electron laser theory", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.237, no.1-2, pp.1, 1985.
24.
L. Friedland, "Correspondence principle in free-electron lasers", Physical Review A, vol.29, no.3, pp.1310, 1984.
25.
G. Dattoli, M. Richetta, "FEL quantum theory: Comments on Glauber coherence, antibunching and squeezing", Optics Communications, vol.50, no.3, pp.165, 1984.
26.
L. Procida, Hai-Woong Lee, "Quantum dynamics of electrons in a free electron laser", Optics Communications, vol.49, no.3, pp.201, 1984.