Abstract:
Corrugated waveguides and lasers in resonant and non-resonant situations are analyzed by an improved coupled mode theory based on a set of the coupled mode equations for ...View moreMetadata
Abstract:
Corrugated waveguides and lasers in resonant and non-resonant situations are analyzed by an improved coupled mode theory based on a set of the coupled mode equations for guided modes and radiation continuum. The distributed feedback (DFB) coefficient and the radiation loss coefficient are given in closed forms. The formulation can be applicable to arbitrarily shaped gratings and multilayer waveguide structures. The accuracy of the theory is examined by comparing it with Tamir's exact calculation for a nonresonant situation and also with Streifer's one for a DFB structure. Reasonable accuracy is obtained by the proper choice of the unperturbed waveguide parameter. The dependence of the two coefficients on the grating depth, the grating period, the guide layer thickness, and the refractive index difference between core and cladding layers is obtained for all Bragg orders up to the fourth, and for four typical grating shapes, namely, for rectangular, sinusoidal, symmetric triangular, and sawtooth gratings. Both the threshold gain of DFB lasers utilizing higher order Bragg reflection and the output coupling efficiency of grating beam couplers are also calculated for these parameters. A new multilayer structure for controlling the radiation loss is proposed and analyzed. This structure is suitable for the suppression of the radiation loss in DBR reflectors as well as for the improvement of the output coupling efficiency in grating beam couplers.
Published in: IEEE Journal of Quantum Electronics ( Volume: 14, Issue: 4, April 1978)
Citations are not available for this document.
Cites in Papers - IEEE (29) | Other Publishers (37)
Cites in Papers - IEEE (29)
Select All
1.
Seyedeh Mahsa Kamali, Ehsan Arbabi, Lynford L. Goddard, "A Zeroth-Order Modification of Coupled Mode Theory for Waveguide Gratings", IEEE Photonics Technology Letters, vol.27, no.7, pp.790-793, 2015.
2.
Seyedeh Mahsa Kamali, Ehsan Arbabi, Lynford L. Goddard, "The unperturbed structure in the coupled mode theory of waveguide gratings", 2014 IEEE Photonics Conference, pp.611-612, 2014.
3.
Ian J. Buss, Geoffrey R. Nash, John G. Rarity, Martin J. Cryan, "Finite-Difference Time-Domain Modeling of Periodic and Disordered Surface Gratings in AlInSb Light Emitting Diodes With Metallic Back-Reflectors", Journal of Lightwave Technology, vol.28, no.8, pp.1190-1200, 2010.
4.
S. Ponmalar, S. Sundaravadivelu, "Design of high speed optical switches for intelligent optical networks", 2008 International Conference on Computing, Communication and Networking, pp.1-4, 2008.
5.
Murali M. Chitteboyina, Donald P. Butler, "Tunable Infrared Microspectrometer Based on Bragg Grating", IEEE Journal of Quantum Electronics, vol.44, no.2, pp.182-184, 2008.
6.
C.A. Flory, "Analysis of directional grating-coupled radiation in waveguide structures", IEEE Journal of Quantum Electronics, vol.40, no.7, pp.949-957, 2004.
7.
J. Kinoshita, "Analysis of radiation mode effects on oscillating properties of DFB lasers", IEEE Journal of Quantum Electronics, vol.35, no.11, pp.1569-1583, 1999.
8.
N. Finger, E. Gornik, "Analysis of metallized-grating coupled twin-waveguide structures", IEEE Journal of Quantum Electronics, vol.35, no.5, pp.832-843, 1999.
9.
T. Tamir, Shuzhang Zhang, "Modal transmission-line theory of multilayered grating structures", Journal of Lightwave Technology, vol.14, no.5, pp.914-927, 1996.
10.
B.E. Little, "A variational coupled-mode theory including radiation loss for grating-assisted couplers", Journal of Lightwave Technology, vol.14, no.2, pp.188-195, 1996.
11.
B.E. Little, H.A. Haus, "A variational coupled-mode theory for periodic waveguides", IEEE Journal of Quantum Electronics, vol.31, no.12, pp.2258-2264, 1995.
12.
T. Makino, "Threshold condition of DFB semiconductor lasers by the local-normal-mode transfer-matrix method: correspondence to the coupled-wave method", Journal of Lightwave Technology, vol.12, no.12, pp.2092-2099, 1994.
13.
X.M. Gong, A.K. Chan, H.F. Taylor, "Lateral mode discrimination in surface emitting DBR lasers with cylindrical symmetry", IEEE Journal of Quantum Electronics, vol.30, no.5, pp.1212-1218, 1994.
14.
Shuzhang Zhang, T. Tamir, "Analysis and design of broadband grating couplers", IEEE Journal of Quantum Electronics, vol.29, no.11, pp.2813-2824, 1993.
15.
M. Matsumoto, "Analysis of the blazing effect in second-order gratings", IEEE Journal of Quantum Electronics, vol.28, no.10, pp.2016-2023, 1992.
16.
R.M. Emmons, D.G. Hall, "Buried-oxide silicon-on-insulator structures. II. Waveguide grating couplers", IEEE Journal of Quantum Electronics, vol.28, no.1, pp.164-175, 1992.
17.
H.A. Haus, W. Huang, "Coupled-mode theory", Proceedings of the IEEE, vol.79, no.10, pp.1505-1518, 1991.
18.
A. Hardy, D. Mehuys, R.G. Waarts, D.F. Welch, W. Streifer, "Sensitivity of grating-coupled surface emitters to length-induced phase variations", IEEE Journal of Quantum Electronics, vol.26, no.9, pp.1467-1475, 1990.
19.
R.J. Noll, S.H. Macomber, "Analysis of grating surface emitting lasers", IEEE Journal of Quantum Electronics, vol.26, no.3, pp.456-466, 1990.
20.
J.-I. Kinoshita, "Axial profile of grating coupled radiation from second-order DFB lasers with phase shifts", IEEE Journal of Quantum Electronics, vol.26, no.3, pp.407-412, 1990.
21.
A. Hardy, D.F. Welch, W. Streifer, "Analysis of a dual grating-type surface emitting laser", IEEE Journal of Quantum Electronics, vol.26, no.1, pp.50-60, 1990.
22.
A. Hardy, D.F. Welch, W. Streifer, "Analysis of second-order gratings", IEEE Journal of Quantum Electronics, vol.25, no.10, pp.2096-2105, 1989.
23.
Y. Shani, A. Katzir, M. Tacke, H.M. Preier, "Pb/sub 1-x/Sn/sub x/Se/Pb/sub 1-x-y/Eu/sub y/Sn/sub x/Se corrugated diode lasers", IEEE Journal of Quantum Electronics, vol.25, no.8, pp.1828-1844, 1989.
24.
L.A. Weller-Brophy, D.G. Hall, "Local normal mode analysis of guided mode interactions with waveguide gratings", Journal of Lightwave Technology, vol.6, no.6, pp.1069-1082, 1988.
25.
T. Makino, J. Glinski, "Effects of radiation loss on the performance of second-order DFB semiconductor lasers", IEEE Journal of Quantum Electronics, vol.24, no.1, pp.73-82, 1988.
26.
Zh. Alferov, S. Gurevich, S. Karpov, E. Portnoi, F. Timofeev, "Monolithically-integrated hybrid heterostructure diode laser with dielectric-film waveguide DBR", IEEE Journal of Quantum Electronics, vol.23, no.6, pp.869-881, 1987.
27.
T. Suhara, H. Nishihara, "Integrated optics components and devices using periodic structures", IEEE Journal of Quantum Electronics, vol.22, no.6, pp.845-867, 1986.
28.
M. Tsuji, S. Matsumoto, H. Shigesawa, K. Takiyama, "Guided-Wave Experiments with Dielectric Waveguides Having Finite Periodic Corrugation", IEEE Transactions on Microwave Theory and Techniques, vol.31, no.4, pp.337-344, 1983.
29.
Y. Yamamoto, T. Kamiya, H. Yanai, "Improved coupled mode analysis of corrugated waveguides and lasers - II: TM mode", IEEE Journal of Quantum Electronics, vol.14, no.8, pp.620-624, 1978.
Cites in Papers - Other Publishers (37)
1.
Chen Zhao, Weijin Chen, Jingxuan Wei, Wenjie Deng, Yinzhou Yan, Yongzhe Zhang, Cheng‐Wei Qiu, "Electrically Tunable and Robust Bound States in the Continuum Enabled by 2D Transition Metal Dichalcogenide", Advanced Optical Materials, pp.2201634, 2022.
2.
Kun Tian, Yonggang Zou, Mingyue Guan, Linlin Shi, He Zhang, Yingtian Xu, Jie Fan, Hui Tang, Xiaohui Ma, "High directionality of surface radiation for surface emitting distributed feedback lasers", Optics Express, vol.30, no.9, pp.14243, 2022.
3.
Fatemeh Moradiani, Mahmood Seifouri, Kambiz Abedi, Fatemeh Geran Gharakhili, "High Extinction Ratio All-Optical Modulator Using a Vanadium-Dioxide Integrated Hybrid Plasmonic Waveguide", Plasmonics, vol.16, no.1, pp.189, 2021.
4.
Malcolm Ng Mou Kehn, "MOMENT METHOD TREATMENT OF CORRUGATIONS WITH FINS OVER RIDGES AND STRATIFIED COVERS USING DYADIC CAVITY AND MULTILAYER GREENS FUNCTIONS FOR STUDIES OF HIGHER-ORDER DIFFRACTION MODES", Progress In Electromagnetics Research B, vol.88, pp.1, 2020.
5.
Laurent Cerutti, Aurore Vicet, Eric Tournié, "Interband mid-infrared lasers", Mid-infrared Optoelectronics, pp.91, 2020.
6.
Huiye Qiu, Yuxia Su, Ping Yu, Ting Hu, Jianyi Yang, Xiaoqing Jiang, "Compact polarization splitter based on silicon grating-assisted couplers", Optics Letters, vol.40, no.9, pp.1885, 2015.
7.
A. A. Afonenko, V. Ya. Aleshkin, A. A. Dubinov, "Efficiency of vertical emission from a semiconductor laser waveguide with a diffraction grating", Semiconductors, vol.48, no.1, pp.89, 2014.
8.
Yi Yang, Chao Peng, Yong Liang, Zhengbin Li, Susumu Noda, "Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs", Physical Review Letters, vol.113, no.3, 2014.
9.
L. Liu, H. W. Qu, Y. Liu, A. Y. Qi, C. L. Ma, Si. Zhang, Y. J. Zhang, W. H. Zheng, "High-brightness single-mode tapered laser diodes with laterally coupled high-order surface grating", 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, pp.1-2, 2014.
10.
M. Gerken, Organic Light-Emitting Diodes (OLEDs), pp.235, 2013.
11.
Yuan Zhong, Xiaopeng Zhu, Guofeng Song, Yidong Huang, Lianghui Chen, "Effect of metal contact''s reflection on the effective coupling coefficient of second-order DFB laser diodes", Microwave and Optical Technology Letters, vol.42, no.4, pp.339, 2004.
12.
Dorothea Wiesmann, Roland Germann, Gian-Luca Bona, Christian David, Daniel Erni, Heinz Jäckel, "Add–drop filter based on apodized surface-corrugated gratings", Journal of the Optical Society of America B, vol.20, no.3, pp.417, 2003.
13.
Renata Reisfeld, Spectroscopy and Dynamics of Collective Excitations in Solids, vol.356, pp.519, 1997.
14.
Moustafa AHMED, Minoru YAMADA, "Design Method for Optical Waveguide Filters Having Corrugation Structures by Corrugation Width Modulation", Optical Review, vol.4, no.3, pp.402, 1997.
15.
Renata Reisfeld, Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Application, vol.85, pp.215, 1996.
16.
Daniel W. C. So, S. R. Seshadri, "Applications of the second-order Bragg interaction in a thin-film optical waveguide for the transverse electric mode", Journal of Applied Physics, vol.80, no.9, pp.4859, 1996.
17.
Tsuneki Yamasaki, Hirotaka Tanaka, Takashi Hinata, Toshio Hosono, "Analysis of electromagnetic fields in inhomogeneous dielectric gratings with periodic surface relief", Radio Science, vol.31, no.6, pp.1931-1939, 1996.
18.
A.A. Shittu, S. Al-Bader, H. Jamid, "Mode reflectivity of finitely-periodic dielectric waveguides", Optics Communications, vol.114, no.3-4, pp.242, 1995.
19.
Masoud Kasraian, S. R. Seshadri, "Thin film devices based on second order Bragg interaction", Journal of Applied Physics, vol.73, no.2, pp.548, 1993.
20.
J. D. Ralston, D. F. G. Gallagher, P. Bittner, J. Fleissner, B. Dischler, P. Koidl, "Grating coupling and intersubband absorption at 10 μm in GaAs/AlxGa1−xAs infrared quantum well waveguides", Journal of Applied Physics, vol.71, no.7, pp.3562, 1992.
21.
M. Tomita, "Analysis of Thin-Film Waveguide with a Rectangular Groove Structure of Finite Extent", Journal of Electromagnetic Waves and Applications, vol.5, no.11, pp.1259, 1991.
22.
R. M. Emmons, D. G. Hall, "Comparison of film thickness tolerances in waveguide grating couplers", Optics Letters, vol.16, no.13, pp.998, 1991.
23.
Dennis G. Hall, , vol.29, pp.1, 1991.
24.
V. Jayan, P.R. Vaya, "OPTICAL POWER COUPLING IN SYMMETRIC TRIANGULAR PERIODIC STRUCTURES", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.10, no.4, pp.355, 1991.
25.
BOHDAN MROZIEWICZ, MACIEJ BUGAJSKI, WLODZIMIERZ NAKWASKI, "The Design and Basic Characteristics of Semiconductor Lasers", Physics of Semiconductor Lasers, pp.107, 1991.
26.
H. Kogelnik, "Theory of Optical Waveguides", Guided-Wave Optoelectronics, vol.26, pp.7, 1990.
27.
A. N. Putilin, "Waveguide holograms in optical computations", Journal of Soviet Laser Research, vol.10, no.4, pp.296, 1989.
28.
M. Tomita, "Thin-film waveguide with a periodic groove structure of finite extent", Journal of the Optical Society of America A, vol.6, no.9, pp.1455, 1989.
29.
H. Kogelnik, "Theory of Optical Waveguides", Guided-Wave Optoelectronics, vol.26, pp.7, 1988.
30.
Yizun Wu, "Equivalent current theory of optical waveguide coupling", Journal of the Optical Society of America A, vol.4, no.10, pp.1902, 1987.