Abstract:
A nonlinear steady-state theory of the emission spectrum of semiconductor (GaAs) lasers above threshold is developed, and limitation to power in a single longitudinal mod...Show MoreMetadata
Abstract:
A nonlinear steady-state theory of the emission spectrum of semiconductor (GaAs) lasers above threshold is developed, and limitation to power in a single longitudinal mode is studied. The nonlinear steady-state rate equations describing the power and the gain are solved iteratively. The model is based on the well known idea that the gain always saturates somewhere below the loss, and power sharing among the modes is dependent on the relative gain of the modes with respect to the loss level. The limitation to single mode power is essentially due to the uneven rate of saturation of the gain of the different modes as they approach the loss level asymptotically, with the dominant mode having the fastest saturation. The rate of saturation of the gain of different modes depends on the power emission spectrum and the intraband relaxation rate of the carriers. In this work, the relaxation is accounted for by using the generalized spectral weight function to describe the carriers. The dependence of maximum single mode power on intraband relaxation time is obtained. It ranges from a few milliwatts for relaxation time of the order of 10-12s to hundreds of milliwatts for relaxation time of 10-13s. The predictions of the model on gain saturation spectra, and carrier lifetime spectra agree well with experimental observations. The gain is seen to saturate near the lasing energy but continues to increase at a reduced rate at higher energy levels. The carrier radiative lifetime is found to decrease sharply in the vicinity of the lasing mode energies.
Published in: IEEE Journal of Quantum Electronics ( Volume: 14, Issue: 10, October 1978)
References is not available for this document.
Select All
1.
W. V. Smith and P. P. Sorokin, "3" in The Laser, New York:McGraw-Hill, 1966.
2.
L. W. Casperson, "Threshold characteristics of multimode laser oscillators", J. Appl. Phys., vol. 46, pp. 5194-5201, Dec. 1975.
3.
S. Iida, K. Takata and Y. Unno, "Spectral behavior and linewidth of (GaAl)As-GaAs double-heterostructure lasers at room temperature with stripe-geometry configuration", IEEE J. Quantum Electron., vol. QE-9, pp. 361-366, Feb. 1973.
4.
P. G. Eliseev and N. N. Shikin, "Single-mode and single-frequency injection lasers (review)", Sov. J. Quantum Electron., vol. 3, pp. 181-192, Nov.-Dec. 1973.
5.
H. P. Weber and D. Gloge, "Short-time mode behavior of GaAs lasers", Appl. Phys. Letts., vol. 17, pp. 231-232, Sept. 1970.
6.
H. S. Sommers and D. O. North, "The power spectrum of injection lasers: The theory and experiment on a nonlinear model of lasing", Solid State Electron., vol. 19, pp. 675-699, Aug. 1976.
7.
R. Karplus and J. Schwinger, "A note on saturation in microwave spectroscopy", Phys. Rev., vol. 73, pp. 1020-1026, May 1948.
8.
E. I. Gordon, "Optical maser oscillators and noise", Bell Syst. Tech. J., vol. 43, pp. 507-539, Jan. 1964.
9.
A. Yariv, Quantum Electronics, New York:Wiley, pp. 407, 1967.
10.
J. P. Gordon, H. J. Zeiger and C. H. Townes, "The maser-New type of microwave amplifier frequency standard and spectrometer", Phys. Rev., vol. 99, pp. 1264-1274, Aug. 1955.
11.
A. L. Schawlow and C. H. Townes, "Infrared and optical masers", Phys. Rev., vol. 112, pp. 1940-1949, Dec. 1958.
12.
P. A. Grivet and A. Blaquiere, Optical Masers, New York:Polytechnic Press, pp. 69, 1963.
13.
J. A. Fleck, "Nonlinear laser noise and coherence", J. Appl. Phys., vol. 37, pp. 188-193, Jan. 1966.
14.
G. Lasher and F. Stern, "Spontaneous and stimulated recombination radiation in semiconductor", Phys. Rev., vol. 133A, pp. 553-562, Jan. 1964.
15.
B. W. Hakki and T. L. Paoli, "Gain spectra in GaAs double-heterostructure injection lasers", J. Appl. Phys., vol. 46, pp. 1299-1305, Mar. 1975.
16.
Y. Nishimura and Y. Nishimura, "Spectral hole burning and nonlinear-gain decrease in a band to level transition semiconductor laser", IEEE J. Quantum Electron., vol. QE-9, pp. 1011-1019, Oct. 1973.
17.
G. H. Glover, "Electron energy relaxation time in GaAs and InP", Appl. Phys. Lett., vol. 21, pp. 409-411, Nov. 1972.
18.
Y. Nishimura, "Electron scattering times in GaAs injection lasers", Jap. J. Appl. Phys., vol. 13, pp. 109-117, Jan. 1974.
19.
A. G. Aleksanian, I. A. Poluektov and Y. M. Popov, "Theory of optical gain and threshold properties of semiconductor lasers", IEEE J. Quantum Electron., vol. QE-10, pp. 297-305, Mar. 1974.
20.
L. Hedin and S. Lundquist, Solid State Physics, New York:Academic, vol. 23, pp. 28-30, 1969.
21.
F. Stern, "Calculated spectral dependence of gain in excited GaAs", Appl. Phys., vol. 47, pp. 5382-5386, Dec. 1976.
22.
H. S. Sommers, "The current dependence of the intensity of spontaneous emission of GaAs injection lasers to full operating power", Appl. Phys. Lett., vol. 19, pp. 424-426, Nov. 1971.
23.
P. Brosson, J. E. Ripper and N. B. Patel, "Variation of spontaneous emission with current in GaAs homostructure and double-heterostructure injection lasers", IEEE J. Quantum Electron., vol. QE-9, pp. 273-280, Feb. 1973.
24.
M. H. Lee, N. Holonyak, R. J. Nelson, D. L. Keune and W. O. Groves, " Behavior of carrier lifetime spectra (77° K) in GaAs 1 _ x P x ", J. Appl. Phys., vol. 46, pp. 323-331, Jan. 1975.
25.
A. Yariv, Quantum Electronics, New York:Wiley, pp. 242-243, 1967.
26.
M. H. Lee, N. Holonyak, R. J. Nelson, D. L. Keune and W. O. Groves, " Behavior of carrier lifetime spectra (77 ° K) in GaAs 1 _ x P x ", J. Appl. Phys., vol. 46, pp. 323-331, Jan. 1975.
27.
J. C. Campbell, W. R. Hitchens, N. Holonyak, M. H. Lee, M. J. Ludowise and J. J. Coleman, " Luminescence laser and carrier-lifetime behavior of constant-temperature LPE In 1 _ x Ga x P (x=25) grown on (100) GaAs ", Appl. Phys. Lett., vol. 24, pp. 327-330, Apr. 1974.
28.
P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise and G. E. Stillman, " Homogeneous or inhomogeneous line broadening in a semiconductor laser: Observations on In 1 _ x Ga x P 1 1_ z A z2 double-heterojunctions in an external grating cavity ", Appl. Phys. Lett., vol. 29, pp. 18-20, Jul.y 1976.
29.
H. Namizaki, "Single mode operation of GaAs-GaAlAs TJS-laser diodes", Trans. IECE Jap., vol. E59, pp. 8-15, May 1976.
30.
P. Garel-Jones and J. C. Dyment, "Calculation of the continuou-wave lasing range and light-output power for double-heterostruuree lasers", IEEE J. Quantum Electron., vol. QE-11, pp. 40-413, July 1975.