Loading [a11y]/accessibility-menu.js
Dynamic Energy-Efficient Computation Offloading in NOMA-Enabled Air–Ground-Integrated Edge Computing | IEEE Journals & Magazine | IEEE Xplore

Dynamic Energy-Efficient Computation Offloading in NOMA-Enabled Air–Ground-Integrated Edge Computing


Abstract:

With the swift progress of Internet of Things (IoT) technologies, the number of IoT devices has grown exponentially, leading to an increasing demand for computational pow...Show More

Abstract:

With the swift progress of Internet of Things (IoT) technologies, the number of IoT devices has grown exponentially, leading to an increasing demand for computational power and system stability. Mobile edge computing (MEC) is a powerful solution that allows IoT devices to offload data to the edge for computing. In situations involving disasters or complex terrains, establishing ground-based stations may be challenging in providing computational services. Edge computing frameworks built with unmanned aerial vehicles (UAVs) and high-altitude platforms (HAPs) can provide airborne computational services for IoT devices situated in environments with disasters or complex terrains. In this article, we design a three-tier framework consisting of ground users (GUs), UAVs, and HAP, offering MEC services for GUs. Considering the randomness and dynamism of task arrivals and the wireless communication quality of devices, we propose an algorithm supporting nonorthogonal multiple access (NOMA) communication in aerial access networks. The objective of the algorithm is to reduce the overall energy consumption of the system while ensuring system stability. Employing stochastic optimization techniques, we convert the task offloading and resource allocation problem into several parallel solvable subproblems. We also provide a theoretical analysis of the algorithm. Through a series of comparative experiments, we demonstrate the feasibility and effectiveness of our proposed dynamic energy-efficient computation offloading (DEECO) algorithm.
Published in: IEEE Internet of Things Journal ( Volume: 11, Issue: 23, 01 December 2024)
Page(s): 37617 - 37629
Date of Publication: 19 August 2024

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

The development and maturity of Internet of Things (IoT) and 6G technologies have facilitated the popularity of computation-intensive applications, like face recognition, autonomous driving and virtual reality [1]. These applications demand substantial real-time computations and are highly sensitive to latency. However, IoT devices, constrained by limited battery capacity and computational capabilities, struggle to sustain prolonged high-performance computing [2]. Mobile edge computing (MEC) provides a solution to this challenge. The core of MEC is to deploy edge servers at base stations (BSs), allowing IoT devices to offload data to MEC servers for execution [3]. Shifting tasks to the edge can prolong device lifespan, enhance service quality, and bolster the overall stability of computing systems.

Select All
1.
B. Mao, Y. Kawamoto and N. Kato, "AI-based joint optimization of qos and security for 6g energy harvesting Internet of Things", IEEE Internet Things J., vol. 7, no. 8, pp. 7032-7042, Aug. 2020.
2.
L. Liu, X. Yuan, D. Chen, N. Zhang, H. Sun and A. Taherkordi, "Multiuser dynamic computation offloading and resource allocation in 5G MEC heterogeneous networks with static and dynamic subchannels", IEEE Trans. Veh. Technol., vol. 72, no. 11, pp. 14924-14938, Nov. 2023.
3.
H. Guo, J. Liu, J. Zhang, W. Sun and N. Kato, "Mobileedge computation offloading for ultradense IoT networks", IEEE Internet Things J., vol. 5, no. 6, pp. 4977-4988, Dec. 2018.
4.
P. Boccadoro, D. Striccoli and L. A. Grieco, "An extensive survey on the Internet of Drones", Ad Hoc Netw., vol. 122, Nov. 2021.
5.
T. P. Truong, A.-T. Tran, T. M. T. Nguyen, T.-V. Nguyen, A. Masood and S. Cho, "MEC-enhanced aerial serving networks via hap: A deep reinforcement learning approach", Proc. Int. Conf. Inf. Netw. (ICOIN), pp. 319-323, 2022.
6.
F. Pervez, A. Sultana, C. Yang and L. Zhao, "Energy and latency efficient joint communication and computation optimization in a multi- UAV-assisted MEC network", IEEE Trans. Wireless Commun., vol. 23, no. 3, pp. 1728-1741, Mar. 2024.
7.
G. Iacovelli, P. Boccadoro and L. A. Grieco, "An optimization approach to energy-efficient UAV communications in cellular networks", Proc. 26th Eur. Wireless Conf., pp. 1-8, 2021.
8.
Y. Zeng and J. Tang, "MEC-assisted real-time data acquisition and processing for UAV with general missions", IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 1058-1072, Jan. 2023.
9.
M. S. Alam, G. K. Kurt, H. Yanikomeroglu, P. Zhu and N. D. Ðào, "High altitude platform station based super macro base station constellations", IEEE Commun. Mag., vol. 59, no. 1, pp. 103-109, Jan. 2021.
10.
Y. Yang, X. Chang, Z. Jia, Z. Han and Z. Han, "Towards 6G joint HAPS-MEC-cloud 3C resource allocation for delay-aware computation offloading", Proc. IEEE Int. Conf. Parallel Distribut. Process. Appl. Big Data Cloud Comput. Sustain. Comput. Commun. Soc. Comput. Netw. (ISPA/BDCloud/SocialCom/SustainCom), pp. 175-182, 2020.
11.
L. P. Qian, S. Zhou, M. Wu and Y. Wu, "Joint optimization of resource allocation and sic ordering in energy-harvesting relay-aided noma NBIoT networks", IEEE Trans. Green Commun. Netw., vol. 8, no. 1, pp. 468-481, Mar. 2024.
12.
Y. Su, S. Fu, J. Si, C. Xiang, N. Zhang and X. Li, "Optimal hovering height and power allocation for UAV-aided noma covert communication system", IEEE Wireless Commun. Letters, vol. 12, no. 6, pp. 937-941, Jun. 2023.
13.
D. S. Lakew, A.-T. Tran, N.-N. Dao and S. Cho, "Intelligent offloading and resource allocation in hap-assisted MEC networks", Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), pp. 1582-1587, 2021.
14.
M. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram and R. Masroor, "Energy efficient UAV-enabled mobile edge computing for IoT devices: A review", IEEE Access, vol. 9, pp. 127779-127798, 2021.
15.
Z. Zhuang, J. Wang, Q. Qi, J. Liao and Z. Han, "Adaptive and robust routing with Lyapunov-based deep RL in MEC networks enabled by blockchains", IEEE Internet Things J., vol. 8, no. 4, pp. 2208-2225, Feb. 2021.
16.
H. Liao, Z. Zhou, X. Zhao and Y. Wang, "Learning-based queue-aware task offloading and resource allocation for space–air–ground-integrated power IoT", IEEE Internet Things J., vol. 8, no. 7, pp. 5250-5263, Apr. 2021.
17.
P. Lai et al., "Online user and power allocation in dynamic noma-based mobile edge computing", IEEE Trans. Mobile Comput., vol. 22, no. 11, pp. 6676-6689, Nov. 2023.
18.
Y. Gong, H. Yao, Z. Xiong, S. Guo, F. R. Yu and D. Niyato, "Computation offloading and energy harvesting schemes for sum rate maximization in space-air-ground networks", Proc. GLOBECOM IEEE Global Commun. Conf., pp. 3941-3946, 2022.
19.
Y. Shi, C. Yi, R. Wang, Q. Wu, B. Chen and J. Cai, "Service migration or task rerouting: A two-timescale online resource optimization for MEC", IEEE Trans. Wireless Commun., vol. 23, no. 2, pp. 1503-1519, Feb. 2024.
20.
L. Tan, Z. Kuang, L. Zhao and A. Liu, "Energy-efficient joint task offloading and resource allocation in OFDMA-based collaborative edge computing", IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1960-1972, Mar. 2022.
21.
N. Waqar, S. A. Hassan, A. Mahmood, K. Dev, D.-T. Do and M. Gidlund, "Computation offloading and resource allocation in MECenabled integrated aerial-terrestrial vehicular networks: A reinforcement learning approach", IEEE Trans. Intell. Transp. Syst., vol. 23, no. 11, pp. 21478-21491, Nov. 2022.
22.
P. Qin, Y. Fu, X. Zhao, K. Wu, J. Liu and M. Wang, "Optimal task offloading and resource allocation for c-noma heterogeneous airground integrated power Internet of Things networks", IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9276-9292, Nov. 2022.
23.
Z. Yang, S. Bi and Y.-J. A. Zhang, "Online trajectory and resource optimization for stochastic UAV-enabled MEC systems", IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5629-5643, Jul. 2022.
24.
H. Wu, J. Chen, T. N. Nguyen and H. Tang, "Lyapunov-guided delay-aware energy efficient offloading in IIoT-MEC systems", IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 2117-2128, Feb. 2023.
25.
S. Bi, L. Huang, H. Wang and Y.-J. A. Zhang, "Lyapunovguided deep reinforcement learning for stable online computation offloading in mobile-edge computing networks", IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7519-7537, Nov. 2021.
26.
K. Guo, R. Gao, W. Xia and T. Q. S. Quek, "Online learning based computation offloading in MEC systems with communication and computation dynamics", IEEE Trans. Commun., vol. 69, no. 2, pp. 1147-1162, Feb. 2021.
27.
W. Zhang, G. Zhang and S. Mao, "Joint parallel offloading and load balancing for cooperative-MEC systems with delay constraints", IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 4249-4263, Apr. 2022.
28.
J. Chen, H. Wu, R. Li and P. Jiao, "Green parallel online offloading for DSCI-type tasks in IoT-edge systems", IEEE Trans. Ind. Informat., vol. 18, no. 11, pp. 7955-7966, Nov. 2022.
29.
C. Tang, Y. Zhao and H. Wu, "Lyapunov-guided optimal service placement in vehicular edge computing", China Commun., vol. 20, no. 3, pp. 201-217, Mar. 2023.
30.
M. Hua, H. Tian and W. Ni, "Online scheduling and optimality analysis for noma-based MEC systems", Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), pp. 1-6, 2021.
Contact IEEE to Subscribe

References

References is not available for this document.