Abstract:
Given a finite number of quantum states with {\em a priori} probabilities, the positive operator-valued measure that maximizes the Shannon mutual information is investiga...Show MoreMetadata
Abstract:
Given a finite number of quantum states with {\em a priori} probabilities, the positive operator-valued measure that maximizes the Shannon mutual information is investigated. The group covariant case is examined in detail.
Published in: IEEE Transactions on Information Theory ( Volume: 24, Issue: 5, September 1978)
References is not available for this document.
Select All
1.
E. M. Alfsen, Compact Convex Sets and Boundary Integrals, New York:Springer-Verlag, 1971.
2.
R. Ash, Information Theory, New York:Interscience, 1965.
3.
E. B. Davies, "On the repeated measurement of continuous observables in quantum mechanics", J. Funct. Anal., vol. 6, pp. 318-346, 1970.
4.
E. B. Davies, Quantum Theory of Open Systems, New York:Academic, 1976.
5.
B. Grunbaum, Convex Polytopes, New York:Interscience, 1967.
6.
C. W. Helstrom and R. S. Kennedy, "Noncommuting observables in quantum detection and estimation theory", IEEE Trans. Inform. Theory, vol. 20, pp. 16-24, 1974.
7.
C. W. Helstrom, J. W. S. Liu and J. P. Gordon, "Quantum mechanical communication theory", Proc. IEEE, vol. 58, pp. 1578-1598, 1970.
8.
A. S. Holevo, "Some estimates of the quantity of information broadcast in a quantum communication channel", Prob. Transmission of Inform., vol. 9, pp. 3-11, 1973.
9.
A. S. Holevo, "Statistical decision theory for quantum systems", J. Multivariate Anal., vol. 3, pp. 337-394, 1973.
10.
J. W. S. Liu, "Reliability of quantum mechanical communication systems", IEEE Trans. Inform. Theory, vol. 16, pp. 319-329, 1970.
11.
D. Middleton, An Introduction to Statistical Communication Theory, New York:McGraw-Hill, 1960.
12.
D. B. Osteyee and I. J. Good, Information Weight of Evidence the Singularity Between Probability Measures and Signal Detection, New York:Springer-Verlag, vol. 376, 1974.
13.
C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, IL, Urbana:Univ. of Illinois, 1949.
14.
V. S. Varadarajan, Geometry of Quantum Theory, NJ, Princeton:Van Nostrand, vol. 1, 1968.
15.
P. M. Woodward, Probability and Information Theory with Applications to Radar, New York:Pergamon, 1964.
16.
H. P. Yuen, R. S. Kennedy and M. Lax, "Optimal testing of multiple hypotheses in quantum detection theory", IEEE Trans. Inform. Theory, vol. 21, pp. 125-134, 1975.