Device Codesign using Reinforcement Learning | IEEE Conference Publication | IEEE Xplore

Device Codesign using Reinforcement Learning


Abstract:

We demonstrate device codesign using reinforcement learning for probabilistic computing applications. We use a spin orbit torque magnetic tunnel junction model (SOT-MTJ) ...Show More

Abstract:

We demonstrate device codesign using reinforcement learning for probabilistic computing applications. We use a spin orbit torque magnetic tunnel junction model (SOT-MTJ) as the device exemplar. We leverage reinforcement learning (RL) to vary key device and material properties of the SOT-MTJ device for stochastic operation. Our RL method generated different candidate devices capable of generating stochastic samples for a given exponential distribution.
Date of Conference: 19-22 May 2024
Date Added to IEEE Xplore: 02 July 2024
ISBN Information:

ISSN Information:

Conference Location: Singapore, Singapore
References is not available for this document.

I. Introduction

Device codesign for a given application is often a tedious process dependent on labor-intensive and time-consuming simulations, fabrication, and testing. However, there is tremendous opportunity to customize devices for particular applications in order to get the best performance possible – whether that be a particular capability, energy usage, latency or throughput, or some other metric or combination of metrics of interest. Emerging devices, such as magnetic tunnel junctions, often have simulation models that abstract device behavior based on key materials and device properties. To effectively leverage the properties of these devices for new computing capabilities (e.g., probabilistic computing), an automated codesign framework is critical to account for application and algorithm constraints while designing these devices. We propose a reinforcement learning (RL) guided framework for device codesign which can account for application and algorithm requirements while optimizing device parameters.

Select All
1.
A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi et al., "A graph placement methodology for fast chip design", Nature, vol. 594, no. 7862, pp. 207-212, 2021.
2.
D. Zhang, S. Huda, E. Songhori, K. Prabhu, Q. Le, A. Goldie, et al., "A full-stack search technique for domain optimized deep learning accelerators", Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 27-42, 2022.
3.
Y.-C. Lu, S. Nath, V. Khandelwal and S. K. Lim, "Rl-sizer: Vlsi gate sizing for timing optimization using deep reinforcement learning", 2021 58th ACM/IEEE Design Automation Conference (DAC)., pp. 733-738, 2021.
4.
A. F. Budak, P. Bhansali, B. Liu, N. Sun, D. Z. Pan and C. V. Kashyap, "Dnn-opt: An rl inspired optimization for analog circuit sizing using deep neural networks", 2021 58th ACM/IEEE Design Automation Conference (DAC)., pp. 1219-1224, 2021.
5.
K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi and B. Nikolic, "Autockt: Deep reinforcement learning of analog circuit designs", 2020 Design Automation & Test in Europe Conference & Exhibition (DATE), pp. 490-495, 2020.
6.
C. Mattiussi and D. Floreano, "Analog genetic encoding for the evolution of circuits and networks", IEEE Transactions on evolutionary computation, vol. 11, no. 5, pp. 596-607, 2007.
7.
J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg, J. Beaulieu, P. J. Bentley, S. Bernard, G. Beslon, D. M. Bryson et al., "The surprising creativity of digital evolution: A collection of anecdotes from the evolutionary computation and artificial life research communities", Artificial life, vol. 26, no. 2, pp. 274-306, 2020.
8.
A. Maicke, J. Arzate, S. Liu, J. Kwon, J. D. Smith, J. B. Aimone, et al., Magnetic tunnel junction random number generators applied to dynamically tuned probability trees driven by spin orbit torque, 2023.
9.
W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno and S. Datta, "Integer factorization using stochastic magnetic tunnel junctions", Nature, vol. 573, no. 7774, pp. 390-393, 2019.
10.
K. Hayakawa, S. Kanai, T. Funatsu, J. Igarashi, B. Jinnai, W. Borders, et al., "Nanosecond random telegraph noise in in-plane magnetic tunnel junctions", Physical review letters, vol. 126, no. 11, pp. 117202, 2021.
11.
D. Edelstein, M. Rizzolo, D. Sil, A. Dutta, J. DeBrosse, M. Wordeman, A. Arceo, I. Chu, J. Demarest, E. R. Edwards et al., "A 14 nm embedded stt-mram cmos technology", 2020 IEEE International Electron Devices Meeting (IEDM)., pp. 11-5, 2020.
12.
M. Urdampilleta, D. J. Niegemann, E. Chanrion, B. Jadot, C. Spence, P.-A. Mortemousque, C. Bäuerle, L. Hutin, B. Bertrand, S. Barraud et al., "Gate-based high fidelity spin readout in a cmos device", Nature nanotechnology, vol. 14, no. 8, pp. 737-741, 2019.
13.
S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. Lee, K. Miura, H. Hasegawa, et al., "Tunnel magnetoresistance of 604% at 300k by suppression of ta diffusion in cofeb/ mgo/ cofeb pseudo-spin-valves annealed at high temperature", Applied Physics Letters, vol. 93, no. 8, 2008.
14.
T. Hanyu, T. Endoh, Y. Ando, S. Ikeda, S. Fukami, H. Sato, et al., "Spin-transfer-torque magnetoresistive random-access memory (stt-mram) technology" in Advances in NonVolatile Memory and Storage Technology., Elsevier, pp. 237-281, 2019.
15.
E. Grimaldi, V. Krizakova, F. Yasin, S. Couet, G. S. Kar, K. Garello, P. Gambardella et al., "Single-shot time-resolved measurements of spin-orbit torque and spin transfer torque switching in 3-terminal magnetic tunnel junctions", 2020.
16.
Y. Wu, K. Garello, W. Kim, M. Gupta, M. Perumkunnil, V. Kateel, S. Couet, R. Carpenter, S. Rao, S. Van Beek et al., "Voltage-gate-assisted spin-orbit-torque magnetic random-access memory for high-density and low-power embedded applications", Physical Review Applied, vol. 15, no. 6, pp. 064015, 2021.
17.
S. Liu, J. Kwon, P. W. Bessler, S. G. Cardwell, C. Schuman, J. D. Smith, et al., "Random bitstream generation using voltage-controlled magnetic anisotropy and spin orbit torque magnetic tunnel junctions", IEEE Journal on Exploratory SolidState Computational Devices and Circuits, vol. 8, no. 2, pp. 194-202, 2022.
18.
I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, et al., "Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection", Nature, vol. 476, no. 7359, pp. 189-193, 2011.
19.
K. Garello, F. Yasin, S. Couet, L. Souriau, J. Swerts, S. Rao, S. Van Beek, W. Kim, E. Liu, S. Kundu et al., "Sot-mram 300mm integration for low power and ultrafast embedded memories", 2018 IEEE symposium on VLSI Circuits., pp. 81-82, 2018.
20.
M. Wang, W. Cai, D. Zhu, Z. Wang, J. Kan, Z. Zhao, K. Cao, Z. Wang, Y. Zhang, T. Zhang et al., "Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques", Nature electronics, vol. 1, no. 11, pp. 582-588, 2018.
21.
V. Ostwal and J. Appenzeller, "Spin–orbit torque-controlled magnetic tunnel junction with low thermal stability for tunable random number generation", IEEE Magnetics Letters, vol. 10, pp. 1-5, 2019.
22.
Z. Wang, W. Zhao, E. Deng, J.-O. Klein and C. Chappert, "Perpendicular-anisotropy magnetic tunnel junction switched by spinhall-assisted spin-transfer torque", Journal of Physics D: Applied Physics, vol. 48, no. 6, pp. 065001, 2015.
23.
J. Leliaert, J. Mulkers, J. De Clercq, A. Coene, M. Dvornik and B. Van Waeyenberge, "Adaptively time stepping the stochastic landau-lifshitz-gilbert equation at nonzero temperature: Implementation and validation in mumax3", Aip Advances, vol. 7, no. 12, 2017.
24.
R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction., MIT press, 2018.
25.
D. C. Crowder, J. D. Smith and S. G. Cardwell, "Deep reinforcement learning methods for discovering novel neuromorphic devices", Proceedings of the 2023 International Conference on Neuromorphic Systems, pp. 1-8, 2023.
26.
E. C. I. Enobio, H. Sato, S. Fukami, F. Matsukura and H. Ohno, "Cofeb thickness dependence of damping constants for single and double cofebmgo interface structures", IEEE Magnetics Letters, vol. 6, pp. 1-3, 2015.
27.
V. Kateel, V. Krizakova, S. Rao, K. Cai, M. Gupta, M. G. Monteiro, F. Yasin, B. Sorée, J. De Boeck, S. Couet et al., "Field-free spin–orbit torque driven switching of perpendicular magnetic tunnel junction through bending current", Nano Letters, 2023.
28.
J. Doevenspeck, K. Garello, B. Verhoef, R. Degraeve, S. Van Beek, D. Crotti, F. Yasin, S. Couet, G. Jayakumar, I. Papistas et al., "Sotmram based analog in-memory computing for dnn inference", 2020 IEEE Symposium on VLSI Technology., pp. 1-2, 2020.
29.
M. Cubukcu, O. Boulle, M. Drouard, K. Garello, C. Onur Avci, I. Mihai Miron, et al., "Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction", Applied Physics Letters, vol. 104, no. 4, 2014.
30.
P. Yang and B. Chen, "Robust kullback-leibler divergence and universal hypothesis testing for continuous distributions", IEEE Transactions on Information Theory, vol. 65, no. 4, pp. 2360-2373, 2018.

Contact IEEE to Subscribe

References

References is not available for this document.