Abstract:
In ambient backscatter communication (AmBC), battery-free devices (tags) harvest energy from ambient radio frequency (RF) signals and communicate with readers. Although r...Show MoreMetadata
Abstract:
In ambient backscatter communication (AmBC), battery-free devices (tags) harvest energy from ambient radio frequency (RF) signals and communicate with readers. Although reliable channel estimation (CE) is critical, classical pilot-based estimators tend to perform poorly. To address this challenge, we treat CE as a denoising problem using conditional generative adversarial networks (CGANs). A three-dimensional (3D) denoising block leverages spatial and temporal characteristics of pilot signals, considering both real and imaginary components of channel matrices. The proposed CGAN estimator is extensively evaluated against traditional estimators like minimum mean-squared error (MMSE), least squares (LS), convolutional neural network (CNN), CNN-based deep residual learning denoiser (CRLD), and blind estimation. Simulation results show 82% gain of the proposed estimator over CRLD and MMSE estimators at an SNR of 5 dB. Moreover, it has advanced learning capabilities and accurately replicates complex channel characteristics.
Published in: IEEE Transactions on Machine Learning in Communications and Networking ( Volume: 2)
Funding Agency:
No metrics found for this document.