Abstract:
The realization of a commercially viable, general-purpose quad CMOS amplifier is presented, along with discussions of the tradeoffs involved in such a design. The amplifi...Show MoreMetadata
Abstract:
The realization of a commercially viable, general-purpose quad CMOS amplifier is presented, along with discussions of the tradeoffs involved in such a design. The amplifier features an output swing that extends to either supply rail, together with an input common-mode range that includes ground. The device is especially well suited for single-supply operation and is fully specified for operation from 5 to 15 V over a temperature range of -55 to +125/spl deg/C. In the areas of input offset voltage, offset voltage drift, input noise voltage, voltage gain, and load driving capability, this implementation offers performance that equals or exceeds that of popular general-purpose quads or bipolar of Bi-FET construction. On a 5-V supply the typical V/SUB os/ is 1 Mv, V/SUB os/ drift is 1.3 /spl mu/V//spl deg/C, 1-kHz noise is 36 nV//spl radic/Hz, and gain is one million into a 600-/spl Omega/ load. This device achieves its performance through circuit design and layout techniques as opposed to special analog CMOS processing, thus lending itself to use on system chips built with digital CMOS technology.
Published in: IEEE Journal of Solid-State Circuits ( Volume: 21, Issue: 6, December 1986)
References is not available for this document.
Select All
1.
P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, New York:Wiley, 1977.
2.
R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, New York:Wiley, 1977.
3.
Analog MOS Integrated Circuits, New York:IEEE Press, 1980.
4.
R. D. Jolly and R. H. McCharles, "A low noise amplifier for switched capacitor filters", IEEE J. Solid-State Circuits, vol. SC-17, pp. 1192-1194, Dec. 1982.
5.
H. C. Lin, "Comparison of input offset voltage of differential amplifiers using bipolar transistors and field-effect transistors", IEEE J. Solid-State Circuits, vol. SC-5, pp. 126-129, June 1970.
6.
M. A. Polinsky, O. H. Schade and J. P. Keller, "CMOS-bipolar monolithic integrated-circuit technology", Proc. Int. Electron Device Meeting, pp. 229-231, 1973.
7.
O. H. Schade, "A new generation of MOS/bipolar operational amplifiers", RCA Rev., vol. 37, pp. 404-424, Sept. 1976.
8.
E. Vittoz and J. Fellrath, "CMOS analog integrated circuits based on weak inversion operation", IEEE J. Solid-State Circuits, vol. SC-12, pp. 224-231, June 1977.
9.
G. Smarandoiu, D. A. Hodges, P. R. Gray and G. F. Landsburg, "CMOS pulse-code-modulation voice codec", IEEE J. Solid-State Circuits, vol. SC-13, pp. 504-507, Aug. 1978.
10.
O. H. Schade, "BiMOS micropower IC's", IEEE J. Solid-State Circuits, vol. SC-13, pp. 791-798, Dec. 1978.
11.
W. Steinhagen and W. L. Engl, "Design of integrated analog CMOS circuits—A multichannel telemetry transmitter", IEEE J. Solid-State Circuits, vol. SC-13, pp. 799-805, Dec. 1978.
12.
J. Bertails, "Low frequency noise considerations for MOS amplifier design", IEEE J. Solid-State Circuits, vol. SC-14, pp. 773-776, Aug. 1979.
13.
W. C. Black, D. J. Allstot and R. A. Reed, "A high-performance low-power CMOS channel filter", IEEE J. Solid-State Circuits, vol. SC-15, pp. 929-938, Dec. 1980.
14.
O. H. Schade and E. J. Kramer, "A low-voltage BiMOS op amp", IEEE J. Solid-State Circuits, vol. SC-16, pp. 661-668, Dec. 1981.
15.
M. G. Degrauwe, J. Rijmenants, E. A. Vittoz and H. J. De Man, "Adaptive biasing CMOS amplifiers", IEEE J. Solid-State Circuits, vol. SC-17, pp. 522-528, June 1982.
16.
B. Song and P. R. Gray, "A precision curvature-compensated CMOS bandgap reference", IEEE J. Solid-State Circuits, vol. SC-18, pp. 634-643, Dec. 1983.
17.
P. R. Gray and R. G. Meyer, "MOS operational amplifier design—A tutorial overview", IEEE J. Solid-State Circuits, vol. SC-17, pp. 969-982, Dec. 1982.
18.
D. Maeding, "A CMOS operational amplifier with low impedance drive capability", IEEE J. Solid-State Circuits, vol. SC-18, pp. 227-229, Apr. 1983.
19.
V. R. Saari, "Low power high-drive CMOS operational amplifiers", IEEE J. Solid-State Circuits, vol. SC-18, pp. 121-127, Feb. 1983.
20.
E. Toy, "An NMOS operational amplifier", ISSCC Dig. Tech. Papers, 1979-Feb.
21.
Y. P. Tsividis, D. L. Fraser and J. E. Dziak, "A process insensitive high-performance NMOS operational amplifier", IEEE J. Solid-State Circuits, vol. SC-15, pp. 921-928, Dec. 1980.
22.
B. J. Hosticka, "Improvement of the gain of MOS amplifiers", IEEE J. Solid-State Circuits, vol. SC-14, pp. 1111-1114, Dec. 1979.
23.
I. A. Young, "A high performance all-enhancement NMOS operational amplifier", IEEE J. Solid-State Circuits, vol. SC-14, pp. 1070-1077, Dec. 1979.
24.
D. Senderowicz and J. H. Huggins, "A low-noise NMOS operational amplifier", IEEE J. Solid-State Circuits, vol. SC-17, pp. 999-1008, Dec. 1982.
25.
Y. P. Tsividis and R. W. Ulmer, "A CMOS voltage reference", IEEE J. Solid-State Circuits, vol. SC-13, pp. 774-778, Dec. 1978.
26.
E. Vittoz and O. Neyroud, "A low-voltage CMOS bandgap reference", IEEE J. Solid-State Circuits, vol. SC-14, pp. 573-577, June 1979.
27.
P. Antognetti, D. D. Caviglia and E. Profumo, "CAD model for threshold and subthreshold conduction in MOSFET's", IEEE J. Solid-State Circuits, vol. SC-17, pp. 454-458, June 1982.
28.
E. Vittoz, "MOS transistors operated in the lateral bipolar mode and their application in CMOS technology", IEEE J. Solid-State Circuits, vol. SC-18, pp. 273-279, June 1983.
29.
E. Vittoz, "The design of high-performance analog circuits on digital CMOS chips", IEEE J. Solid-State Circuits, vol. SC-20, pp. 657-665, June 1985.
30.
M. Degrauwe, E. Vittoz and H. Oguey, "A family of CMOS compatible bandgap voltage regulators", ISSCC Dig. Tech. Papers, 1985-Feb.