Loading [MathJax]/extensions/MathMenu.js
Effects of Particle Dispersion on EL Inception and Extinction Fields of TiO2/Epoxy Nanocomposites | IEEE Journals & Magazine | IEEE Xplore

Effects of Particle Dispersion on EL Inception and Extinction Fields of TiO2/Epoxy Nanocomposites


Abstract:

It has been revealed that the ac breakdown strength of TiO2/epoxy nanocomposites, with good particle dispersion, is higher than that of unfilled epoxy resin. Here, the el...Show More

Abstract:

It has been revealed that the ac breakdown strength of TiO2/epoxy nanocomposites, with good particle dispersion, is higher than that of unfilled epoxy resin. Here, the electroluminescence (EL) inception and extinction fields of TiO2/epoxy nanocomposites with varying particle dispersion states were examined to explain the mechanism underlying the breakdown strength enhancement. The findings revealed that the EL inception and extinction fields of TiO2/epoxy nanocomposites, with high particle dispersion, exceeded those of the unfilled epoxy resin, probably because the nanoparticles prevent the movement of electrons to gain energy. Conversely, TiO2/epoxy nanocomposites that contain agglomerates exhibit almost the same or lower EL inception and extinction fields compared to those of the unfilled epoxy resin. This is attributed to the acceleration of electrons to gain energy in the broad region of a high electric field surrounding the agglomerates.
Published in: IEEE Transactions on Dielectrics and Electrical Insulation ( Volume: 31, Issue: 4, August 2024)
Page(s): 1788 - 1796
Date of Publication: 22 February 2024

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Epoxy resin is employed as a solid insulating material inside power apparatuses, such as generators, transformers, and switchgears [1]. Enhancing breakdown strength increases the operating electric field, thereby contributing to the development of high-efficiency generators and compact solid switchgears. One technology that improves the breakdown strength of epoxy resins involves the use of nanocomposites in which nano-sized ceramic particles are dispersed throughout the epoxy resin. Epoxy nanocomposites are recognized for their excellent insulation performance, including superior breakdown strength and resistance to partial discharges [2]. Application of epoxy nanocomposites in generators and solid switchgears has also been proposed [3], [4].

Select All
1.
T. Dakin, "Application of epoxy resins in electrical apparatus", IEEE Trans. Electr. Insul., vol. EI-9, no. 4, pp. 121-128, Dec. 1974.
2.
T. Tanaka and T. Imai, Advanced Nanodielectrics: Fundamentals and Applications, London, U.K:Jenny Stanford, vol. 1, 2017.
3.
T. Imai et al., "Component models insulated with nanocomposite material for environmentally-friendly switchgear", Proc. IEEE Int. Symp. Electr. Insul., pp. 1-4, Jun. 2010.
4.
X. Huang and T. Tanaka, Polymer Composites for Electrical Engineering, New York, NY, USA:Wiley, 2021.
5.
T. Imai, F. Sawa, T. Ozaki, T. Nakano, T. Shimizu and T. Yoshimitsu, "Preparation and insulation properties of epoxy-layered silicate nanocomposite", IEEJ Trans. Fundam. Mater., vol. 124, no. 11, pp. 1065-1072, 2004.
6.
C. Dai, M. Ding, G. Zhu, X. Chen and A. Paramane, "Enhanced interface effect on charge dynamics and thermal properties of epoxy nanocomposites with plasma-treated nano-alumina at high temperature", Surf. Interfaces, vol. 42, Nov. 2023.
7.
M. M. Adnan, T. A. Ve, S. Hvidsten, M. G. Ese, J. Glaum and M.-A. Einarsrud, " Electrical treeing and partial discharge behavior in epoxy nanocomposites with in situ synthesized SiO 2 ", IEEE Trans. Dielectr. Electr. Insul., vol. 30, no. 3, pp. 936-945, Jun. 2023.
8.
Y. Han, C. Zhao, J. Sun and Z. Li, "Charge transport characteristics of core-shell SiC filled epoxy nanocomposites", IEEE Trans. Dielectr. Electr. Insul., vol. 30, no. 6, pp. 2706-2713, Dec. 2023.
9.
M. Kurimoto, T. Umemoto, S. Yoshida, T. Mabuchi and H. Muto, " Breakdown strength of TiO 2 /Epoxy nanocomposites using centrifugation agglomerate removal ", IEEE Trans. Dielectr. Electr. Insul., vol. 28, no. 1, pp. 74-81, Feb. 2021.
10.
M. Hirai, M. Kurimoto, S. Yoshida, T. Umemoto, T. Mabuchi and H. Muto, "Effects of nanofiller material and particle dispersion on impulse breakdown strength of epoxy nanocomposites", IEEJ Trans. Fundam. Mater., vol. 142, no. 4, pp. 138-144, Apr. 2022.
11.
M. Hirai et al., " AC breakdown strength and EL inception field of TiO 2 /epoxy nanocomposites having different particle dispersion ", Proc. Int. Symp. High Voltage Eng. (ISH), pp. 917-920, 2023.
12.
S. S. Bamji, A. T. Bulinski and M. Abou-Dakka, "Luminescence and space charge in polymeric dielectrics—[Whitehead memorial lecture (2008)]", IEEE Trans. Dielectr. Electr. Insul., vol. 16, no. 5, pp. 1376-1392, Oct. 2009.
13.
S. S. Bamji, A. T. Bulinski, R. J. Densley and M. Matsuki, "Degradation mechanism at XLPE/semicon interface subjected to high electrical stress", IEEE Trans. Electr. Insul., vol. 26, no. 2, pp. 278-284, Apr. 1991.
14.
S. S. Bamji, M. Kaufhold and A. T. Bulinski, "Electroluminescence technique to evaluate the effect of impulse tests on high voltage cables", IEEE Trans. Dielectr. Electr. Insul., vol. 5, no. 2, pp. 204-210, Apr. 1998.
15.
S. S. Bamji, K. Tohyama and A. T. Bulinski, "Electroluminescence due to impulse voltage in cable-grade XLPE", IEEE Trans. Dielectr. Electr. Insul., vol. 6, no. 3, pp. 288-294, Jun. 1999.
16.
S. S. Bamji, A. T. Bulinski, I. Powell and N. Shimizu, "Light emission in XLPE subjected to HV in high vacuum and pressurized gas", IEEE Trans. Dielectr. Electr. Insul., vol. 8, no. 2, pp. 233-238, Apr. 2001.
17.
S. S. Bamji, A. T. Bulinski and R. J. Densley, "Degradation of polymeric insulation due to photoemission caused by high electric fields", IEEE Trans. Electr. Insul., vol. 24, no. 1, pp. 91-98, Feb. 1989.
18.
S. S. Bamji, A. T. Bulinski and R. J. Densley, "The role of polymer interface during tree initiation in LDPE", IEEE Trans. Electr. Insul., vol. EI-21, no. 4, pp. 639-644, Aug. 1986.
19.
S. Bamji, M. Dakka and A. Bulinski, "Phase-resolved pulsed electro-acoustic technique to detect space charge in solid dielectrics subjected to AC voltage", IEEE Trans. Dielectr. Electr. Insul., vol. 14, no. 1, pp. 77-82, Feb. 2007.
20.
J. K. Nelson, Y. Hu and J. Thiticharwnpong, " Electrical properties of TiO 2 nanocomposites ", Proc. IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), vol. 2003, pp. 719-722.
21.
R. Smith, C. Liang, M. Landry, J. Nelson and L. Schadler, "The mechanisms leading to the useful electrical properties of polymer nanodielectrics", IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 1, pp. 187-196, Feb. 2008.
22.
M. Kurimoto, S. Yoshida, T. Umemoto, T. Mabuchi and H. Muto, " Impulse breakdown strength of epoxy/TiO 2 nanocomposite enhanced by agglomerate removal ", Proc. IEEE Conf. Electr. Insul. Dielectric Phenomena (CEIDP), pp. 360-363, Oct. 2019.
23.
M. Hirai et al., " Electroluminescence characteristics of epoxy/TiO 2 nanocomposites ", Proc. IEEE Conf. Electr. Insul. Dielectric Phenomena (CEIDP), pp. 262-265, Oct. 2022.
24.
S. Masuda et al., "Electroluminescence of epoxy resin nanocomposite under AC high field II", Proc. IEEE Conf. Electr. Insul. Dielectric Phenomena (CEIDP), pp. 83-86, Oct. 2020.
25.
J. Li et al., "Effects of high temperature and high electric field on the space charge behavior in epoxy resin for power modules", IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 3, pp. 882-890, Jun. 2020.
26.
T. Tanaka, M. Kozako, N. Fuse and Y. Ohki, "Proposal of a multi-core model for polymer nanocomposite dielectrics", IEEE Trans. Dielectr. Electr. Insul., vol. 12, no. 4, pp. 669-681, Aug. 2005.
27.
K. Tagawa, M. Kurimoto, S. Yoshida, T. Umemoto, T. Mabuchi and H. Muto, " Effect of agglomerate size on AC breakdown strength of TiO 2 /epoxy nanocomposites ", IEEJ Trans. Fundam. Mater., vol. 142, no. 4, pp. 159-165, 2022.
28.
K. Tagawa, M. Kurimoto, T. Sawada, S. Yoshida, T. Umemoto and H. Muto, "Electric field distribution around asymmetric agglomerate model reconstructed from FIB–SEM images of epoxy nanocomposite", IET Nanodielectrics, vol. 6, no. 1, pp. 9-18, Mar. 2023.
29.
G. G. Raju, Dielectrics in Electric Fields, Boca Raton, FL, USA:CRC Press, 2003.
30.
B. Sareni, L. Krähenbühl, A. Beroual and C. Brosseau, "Effective dielectric constant of random composite materials", J. Appl. Phys., vol. 81, no. 5, pp. 2375-2383, Mar. 1997.
Contact IEEE to Subscribe

References

References is not available for this document.