Loading [MathJax]/extensions/MathZoom.js
Synthetic Data in Human Analysis: A Survey | IEEE Journals & Magazine | IEEE Xplore

Abstract:

Deep neural networks have become prevalent in human analysis, boosting the performance of applications, such as biometric recognition, action recognition, as well as pers...Show More

Abstract:

Deep neural networks have become prevalent in human analysis, boosting the performance of applications, such as biometric recognition, action recognition, as well as person re-identification. However, the performance of such networks scales with the available training data. In human analysis, the demand for large-scale datasets poses a severe challenge, as data collection is tedious, time-expensive, costly and must comply with data protection laws. Current research investigates the generation of synthetic data as an efficient and privacy-ensuring alternative to collecting real data in the field. This survey introduces the basic definitions and methodologies, essential when generating and employing synthetic data for human analysis. We summarise current state-of-the-art methods and the main benefits of using synthetic data. We also provide an overview of publicly available synthetic datasets and generation models. Finally, we discuss limitations, as well as open research problems in this field. This survey is intended for researchers and practitioners in the field of human analysis.
Page(s): 4957 - 4976
Date of Publication: 06 February 2024

ISSN Information:

PubMed ID: 38319772

Funding Agency:

References is not available for this document.

I. Introduction

Deep neural networks (DNNs) have witnessed remarkable advancement in the past decade, leading to mature and robust algorithms in visual perception, natural language processing, and robotic control [1], among others. Such advancement has been fuelled by the development of algorithms to train DNNs, the availability of large-scale training datasets, as well as the progress in computational power.

Select All
1.
Y. LeCun, Y. Bengio and G. Hinton, "Deep learning", Nature, vol. 521, no. 7553, pp. 436-444, 2015.
2.
T. Karras et al., "Alias-free generative adversarial networks", Proc. Adv. Neural Inf. Process. Syst., pp. 852-863, 2021.
3.
R. Gal, D. C. Hochberg, A. Bermano and D. Cohen-Or, "SWAGAN: A style-based wavelet-driven generative model", ACM Trans. Graph., vol. 40, no. 4, pp. 1-11, 2021.
4.
Q. Feng, C. Guo, F. Benitez-Quiroz and A. M. Martinez, "When do GANs replicate? On the choice of dataset size", Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 6701-6710, 2021.
5.
T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen and T. Aila, "Analyzing and improving the image quality of styleGAN", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 8110-8119, 2020.
6.
D. Maltoni, D. Maio, A. K. Jain and S. Prabhakar, "Synthetic fingerprint generation" in Handbook of Fingerprint Recognition, Berlin, Germany:Springer, pp. 271-302, 2009.
7.
S. A. Grosz and A. K. Jain, "SpoofGAN: Synthetic fingerprint spoof images", 2022.
8.
G. Varol et al., "Learning from synthetic humans", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 109-117, 2017.
9.
H. Hwang, C. Jang, G. Park, J. Cho and I.-J. Kim, "ElderSim: A synthetic data generation platform for human action recognition in eldercare applications", 2020.
10.
H. Dou et al., "VersatileGait: A large-scale synthetic gait dataset with fine-grained attributes and complicated scenarios", 2021.
11.
E. Wood, T. Baltrušaitis, C. Hewitt, S. Dziadzio, T. J. Cashman and J. Shotton, "Fake it till you make it: Face analysis in the wild using synthetic data alone", Proc. IEEE/CVF Intl. Conf. Comput. Vis., pp. 3681-3691, 2021.
12.
P. İrtem, E. İrtem and N. Erdoğmuş, "Impact of variations in synthetic training data on fingerprint classification", Proc. Int. Conf. Biometrics Special Int. Group, pp. 1-4, 2019.
13.
F. K. Dankar and M. Ibrahim, "Fake it till you make it: Guidelines for effective synthetic data generation", Appl. Sci., vol. 11, no. 5, pp. 2158, 2021.
14.
Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim and J. Choo, "StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 8789-8797, 2018.
15.
S. Yadav, C. Chen and A. Ross, "Synthesizing iris images using RaSGAN with application in presentation attack detection", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops, pp. 2422-2430, 2019.
16.
S. I. Nikolenko, Synthetic Data for Deep Learning, Berlin, Germany:Springer, vol. 174, 2021.
17.
J. J. Engelsma, S. A. Grosz and A. K. Jain, "PrintsGAN: Synthetic fingerprint generator", 2022.
18.
T. Karras, S. Laine and T. Aila, "A style-based generator architecture for generative adversarial networks", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 4401-4410, 2019.
19.
Y. Alaluf, O. Patashnik and D. Cohen-Or, "Only a matter of style: Age transformation using a style-based regression model", ACM Trans. Graph., vol. 40, no. 4, pp. 1-12, 2021.
20.
Y. Shen, J. Gu, X. Tang and B. Zhou, "Interpreting the latent space of GANs for semantic face editing", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 9243-9252, 2020.
21.
P. J. Phillips et al., "Overview of the face recognition grand challenge", Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 947-954, 2005.
22.
"ISO/IEC 2382–37:2017 Information Technology - Vocabulary - Part 37: Biometrics.", 2017.
23.
P. Drozdowski, C. Rathgeb and C. Busch, "Sic-Gen: A synthetic iris-code generator", Proc. Int. Conf. Biometrics Special Int. Group, pp. 1-6, 2017.
24.
A. Kortylewski, B. Egger, A. Schneider, T. Gerig, A. Morel-Forster and T. Vetter, "Analyzing and reducing the damage of dataset bias to face recognition with synthetic data", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops, pp. 2261-2268, 2019.
25.
C. Shorten and T. M. Khoshgoftaar, "A survey on image data augmentation for deep learning", J. Big Data, vol. 6, no. 1, pp. 1-48, 2019.
26.
H. Qiu, B. Yu, D. Gong, Z. Li, W. Liu and D. Tao, "SynFace: Face recognition with synthetic data", Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 10880-10890, 2021.
27.
P. Bontrager, A. Roy, J. Togelius, N. Memon and A. Ross, "DeepMasterPrints: Generating masterprints for dictionary attacks via latent variable evolution", Proc. IEEE 9th Int. Conf. Biometrics Theory Appl. Syst., pp. 1-9, 2018.
28.
Y. Mirsky and W. Lee, "The creation and detection of deepfakes: A survey", ACM Comput. Surv., vol. 54, no. 1, pp. 1-41, 2021.
29.
P. Tinsley, A. Czajka and P. Flynn, "This face does not exist... but it might be yours! Identity leakage in generative models", Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., pp. 1320-1328, 2021.
30.
M. Fredrikson, S. Jha and T. Ristenpart, "Model inversion attacks that exploit confidence information and basic countermeasures", Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., pp. 1322-1333, 2015.
Contact IEEE to Subscribe

References

References is not available for this document.