Abstract:
Sentiment analysis, a subfield of Natural Language Processing (NLP), focuses on the study of emotions expressed in text data. While extensively used in major languages su...Show MoreMetadata
Abstract:
Sentiment analysis, a subfield of Natural Language Processing (NLP), focuses on the study of emotions expressed in text data. While extensively used in major languages such as English, its application in Greek remains underexplored. We investigate sentiment analysis in Greek clinical dialogues, focusing on hematologic malignancies. These dialogues offer valuable insights into patient experiences, healthcare provider approaches in palliative care, and underscore the critical role of sentiment analysis in accurately assessing patients' emotional status for effective care. Our study compares three methodologies—Greek Lexicon, VADER, and BERT—while addressing the limited Greek resources in healthcare-related NLP. Key findings indicate that BERT outperformed other methods by achieving well-balanced precision and recall in assessing sentiment. The Lexicon-Based approach encountered challenges in identifying both negative and positive sentiments, while VADER showcased robust results. Our study involves data collection, data annotation, model training, and performance evaluation. We aim to address the research gap and the unique challenges of sentiment analysis in Greek, especially in context of hematologic malignancies, where NLP and sentiment analysis resources are limited.
Date of Conference: 05-08 December 2023
Date Added to IEEE Xplore: 18 January 2024
ISBN Information:
ISSN Information:
References is not available for this document.
Select All
1.
D. A. Arber et al., "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia", Blood, vol. 127, pp. 2391-2405, May 2016.
2.
N. A. Fadul, B. El Osta, S. Dalal, V. A. Poulter and E. Bruera, "Comparison of symptom burden among patients referred to palliative care with hematologic malignancies versus those with solid tumors", J. Palliat. Med., vol. 11, no. 3, pp. 422-427, Apr. 2008.
3.
V. Manitta, R. Zordan, M. Cole-Sinclair, H. Nandurkar and J. Philip, "The symptom burden of patients with hematological malignancy: A cross-sectional observational study", J. Pain Symptom Manage, vol. 42, no. 3, pp. 432-442, Sep. 2011.
4.
C. J. Hutto and E. Gilbert, "VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text", Proc. Int. AAAI Conf. Web Soc. Media, vol. 8, no. 1, pp. 216-225, May 2014.
5.
A. Tsakalidis, S. Papadopoulos and I. Kompatsiaris, "An ensemble model for cross-domain polarity classification on twitter", Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8787, pp. 168-177, 2014.
6.
J. Devlin, M. W. Chang, K. Lee and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf, vol. 1, pp. 4171-4186, Oct. 2018, [online] Available: https://arxiv.org/abs/1810.04805v2.
7.
S. M. Mohammad, F. Bravo-Marquez, M. Salameh and S. Kiritchenko, "SemEval-2018 Task 1: Affect in Tweets", NAACL HLT 2018 - Int. Work. Semant. Eval. SemEval 2018 - Proc. 12th Work., pp. 1-17, 2018.
8.
I. Perikos and I. Hatzilygeroudis, "Recognizing emotions in text using ensemble of classifiers", Eng. Appl. Artif. Intell., vol. 51, pp. 191-201, May 2016.
9.
G. A. Ruz, P. A. Henríquez and A. Mascareño, "Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers", Futur. Gener. Comput. Syst., vol. 106, pp. 92-104, May 2020.
10.
J. Xue et al., "Twitter discussions and emotions about the COVID-19 pandemic: Machine learning approach", J. Med. Internet Res., vol. 22, no. 11, pp. e20550, Nov. 2020.
11.
B. Jiang, H. Zhang, C. Lv and C. Yang, Sentiment Classification Based On Clause Polarity And Fusion Via Convoluntional Neural Network.
12.
F. Luo and H. Wang, "Chinese Text Sentiment Classification by H-RNN-CNN", Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Sci. Nat. Univ. Pekin., vol. 54, no. 3, pp. 459-465, May 2018.
13.
C. Yang, H. Zhang, B. Jiang and K. Li, "Aspect-based sentiment analysis with alternating coattention networks", Inf. Process. Manag., vol. 56, no. 3, pp. 463-478, May 2019.
14.
Y. Cai et al., "A hybrid model for opinion mining based on domain sentiment dictionary", Int. J. Mach. Learn. Cybern., vol. 10, no. 8, pp. 2131-2142, Aug. 2019.
15.
G. Xu, Z. Yu, H. Yao, F. Li, Y. Meng and X. Wu, "Chinese Text Sentiment Analysis Based on Extended Sentiment Dictionary", IEEE Access, vol. 7, pp. 43749-43762, 2019.
16.
A. Zunic, P. Corcoran and I. Spasic, "Sentiment Analysis in Health and Well-Being: Systematic Review", JMIR Med Inf., vol. 8, no. 1, pp. e16023, Jan. 2020, [online] Available: https//medinform.jmir.org/2020/1/e16023.
17.
P. Gonçalves, M. Araújo, F. Benevenuto and M. Cha, "Comparing and combining sentiment analysis methods", COSN 2013 - Proc. 2013 Conf. Online Soc. Networks, pp. 27-37, 2013.
18.
G. Markopoulos, G. Mikros, A. Iliadi and M. Liontos, "Sentiment Analysis of Hotel Reviews in Greek: A Comparison of Unigram Features", Springer Proc. Bus. Econ, pp. 373-383, 2015.
19.
G. Petasis, D. Spiliotopoulos, N. Tsirakis and P. Tsantilas, "Sentiment analysis for reputation management: Mining the Greek web", Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8445 LNCS, pp. 327-340, 2014.
20.
G. Kalamatianos, D. Mallis, S. Symeonidis and A. Arampatzis, Sentiment Analysis of Greek Tweets and Hashtags using a Sentiment Lexicon, 2015.
21.
K. L. Kermanidis and M. Maragoudakis, "Political sentiment analysis of tweets before and after the Greek elections of May 2012", Int. J. Soc. Netw. Min., vol. 1, no. 3/4, pp. 298, 2013.
22.
D. Kydros, M. Argyropoulou and V. Vrana, "A Content and Sentiment Analysis of Greek Tweets during the Pandemic", Sustain., vol. 13, pp. 6150, May 2021.
23.
E. Kapoteli, P. Koukaras and C. Tjortjis, "Social Media Sentiment Analysis Related to COVID-19 Vaccines: Case Studies in English and Greek Language" in IFIP Adv. Inf. Commun. Technol., IFIP, vol. 647, pp. 360-372, 2022.
24.
L. Samaras, E. García-Barriocanal and M. A. Sicilia, "Sentiment analysis of COVID-19 cases in Greece using Twitter data", Expert Syst. Appl., vol. 230, pp. 120577, Nov. 2023.
25.
C. Stefanis et al., "Sentiment analysis of epidemiological surveillance reports on COVID-19 in Greece using machine learning models", Front. Public Heal., vol. 11, 2023.
26.
A. Katika, E. Zoulias, V. Koufi and F. Malamateniou, "Mining Greek Tweets on Long COVID Using Sentiment Analysis and Topic Modeling", Stud. Health Technol. Inform., vol. 305, pp. 545-548, Jun. 2023.
27.
A. Paszke et al., "PyTorch: An Imperative Style High-Performance Deep Learning Library", Adv. Neural Inf. Process. Syst., vol. 32, Dec. 2019, [online] Available: https://arxiv.org/abs/1912.01703v1.
28.
D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization", 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc, Dec. 2014, [online] Available: https://arxiv.org/abs/1412.6980v9.
29.
P. Refaeilzadeh, L. Tang and H. Liu, "Cross-Validation", Encycl. Database Syst., pp. 532-538, 2009.
30.
Y. Liu et al., RoBERTa: A Robustly Optimized BERT Pretraining Approach, Jul. 2019, [online] Available: https://arxiv.org/abs/1907.11692v1.