Loading [MathJax]/extensions/TeX/boldsymbol.js
Corrections to “On the Contractivity of Plug-and-Play Operators” | IEEE Journals & Magazine | IEEE Xplore

Corrections to “On the Contractivity of Plug-and-Play Operators”


Abstract:

Presents corrections to the article “On the Contractivity of Plug-and-Play Operators”.

Abstract:

Presents corrections to the article “On the Contractivity of Plug-and-Play Operators”.
Published in: IEEE Signal Processing Letters ( Volume: 30)
Page(s): 1817 - 1817
Date of Publication: 21 December 2023

ISSN Information:

Funding Agency:


In this note, we rectify mistakes in the proof of [1, Lemma 1] and the statement of [1, Th. 2]. The “necessity” part in the proof of [1, Lemma 1] is incorrect, which is rectified below.

Proof of [1, Lemma 1]:

(\Leftarrow): See the supplement of [1].

(\Rightarrow): Suppose there exists \mathbf {0}\ne \boldsymbol{x}\in \mathbb {U}\cap \mathbb {V}. Since \boldsymbol{x}\in \mathbb {V}, it follows from the definition of \mathbb {V} that \boldsymbol{x}= \boldsymbol{y}+\boldsymbol{z} where \boldsymbol{y}\in \mathcal {N}(\mathbf {I}-\mathbf {N}) and \boldsymbol{z}\in \mathcal {N}(\mathbf {I}+\mathbf {N}); furthermore, as \mathbf {N}\in \mathbb {S}^{n}, we have \Vert \boldsymbol{x}\Vert ^{2}=\Vert \boldsymbol{y}\Vert _{2}^{2} + \Vert \boldsymbol{z}\Vert _{2}^{2}. Let \boldsymbol{u}:= \boldsymbol{y}-\boldsymbol{z}; notice that \mathbf {N}\boldsymbol{u}=\boldsymbol{x}. Moreover, since \mathbf {N}\boldsymbol{u}\in \mathbb {U} and \Vert \mathbf {M}\boldsymbol{v}\Vert _{2} = \Vert \boldsymbol{v}\Vert _{2} for all \boldsymbol{v}\in \mathbb {U}, we get \begin{equation*} \Vert \mathbf {M}(\mathbf {N}\boldsymbol{u})\Vert _{2}^{2} = \Vert \mathbf {N}\boldsymbol{u}\Vert _{2}^{2} = \Vert \boldsymbol{x}\Vert _{2}^{2} = \Vert \boldsymbol{y}\Vert _{2}^{2} + \Vert \boldsymbol{z}\Vert _{2}^{2} = \Vert \boldsymbol{u}\Vert _{2}^{2}, \end{equation*} View SourceRight-click on figure for MathML and additional features.This contradicts \Vert \mathbf {M}\mathbf {N}\Vert _{2} < 1.

Theorem 1 ([1, Th. 2]):

Let \mathbf {W} be a symmetric denoiser and \rho > 0. Then \Vert \mathbf {R}\Vert _{2} < 1 if and only if (\mathcal {N}(\mathbf {I}-\mathbf {W}) \oplus \mathcal {N}(\mathbf {W})) \cap \, \mathcal {N}(\mathbf {A}) = \lbrace \mathbf {0}\rbrace.

For the ease of reference, we recall that [1, Eq. (8)] \begin{align*} \mathbf {R}=& \frac{1}{2}(\mathbf {I}+ \mathbf {J}), \quad \mathbf {J}= \mathbf {F}\mathbf {V}, \tag{1a}\\ \mathbf {F}=& 2(\mathbf {I}+ \rho \mathbf {A}^\top \mathbf {A}) ^{-1} - \mathbf {I},\quad \mathbf {V}= (2\mathbf {W}-\mathbf {I}). \tag{1b} \end{align*} View SourceRight-click on figure for MathML and additional features.It can be checked (using [1, Lemma 1]) that (\mathcal {N}(\mathbf {I}-\mathbf {W}) \oplus \mathcal {N}(\mathbf {W})) \cap \mathcal {N}(\mathbf {A}) = \lbrace \mathbf {0}\rbrace is equivalent to \Vert \mathbf {J}\Vert _{2} < 1. However, \Vert \mathbf {J}\Vert _{2} < 1 is sufficient but not necessary for \Vert \mathbf {R}\Vert _{2} < 1. Thus, the condition in Theorem 1 is only sufficient for \Vert \mathbf {R}\Vert _{2} < 1; the correct statement of Theorem 1 is as follows.

Theorem 2:

Let \mathbf {W} be a symmetric denoiser and \rho > 0. If (\mathcal {N}(\mathbf {I}-\mathbf {W}) \oplus \mathcal {N}(\mathbf {W})) \cap \, \mathcal {N}(\mathbf {A}) = \lbrace \mathbf {0}\rbrace, then \Vert \mathbf {R}\Vert _{2} < 1.

We next give an equivalent condition for \Vert \mathbf {R}\Vert _{2} < 1.

Theorem 3:

Let \mathbf {W} be a symmetric denoiser and \rho > 0. Then \Vert \mathbf {R}\Vert _{2} < 1 if and only if \mathcal {N}(\mathbf {I}-\mathbf {W}) \cap \mathcal {N}(\mathbf {A}) = \lbrace \mathbf {0}\rbrace.

Remark 1:

The condition in Theorem 3 is weaker than the sufficient condition in Theorem 2. In fact, the condition in Theorem 3 is identical to the equivalent condition in [1, Th. 1] for the contractivity of PnP-ISTA operator.\hfill\blacklozenge

In the light of Theorem 3, we can drop the nonsingularity assumption on \mathbf {W} in [1, Corollary 2] to obtain the following stronger result; see [1, Sec. III-A] for more details.

Corollary 1:

Let \mathbf {W} be a symmetric denoiser for which 1 is a simple eigenvalue. Then, for any \rho > 0, PnP-ADMM is contractive and converges linearly for inpainting, deblurring, and superresolution.

We now prove Theorem 3, starting with some preliminaries. We recall the result [1, Proposition A.1] from the supplement.

Proposition 1:

Let \mathbf {T}\in \mathbb {S}^{n} be such that \Vert \mathbf {T}\Vert _{2} \leqslant 1. Let \mathbb {Y}\subseteq \mathbb {R}^{n} be the space spanned by eigenvectors of \mathbf {T} corresponding to eigenvalues \pm 1. Then \Vert \mathbf {T}\boldsymbol{z}\Vert _{2} < \Vert \boldsymbol{z}\Vert _{2} for all \boldsymbol{z}\in \mathbb {R}^{n} \setminus \mathbb {Y}.

Remark 2:

Notice from (1b) that \mathbf {F}\in \mathbb {S}^{n}. We can conclude using the spectral mapping theorem that \sigma (\mathbf {F}) \subseteq (-1, 1] for all \rho > 0, where \sigma (\mathbf {F}) is the spectrum of \mathbf {F}; consequently, \Vert \mathbf {F}\Vert _{2} \leqslant 1. Also, since \sigma (\mathbf {W}) \subseteq [0,1] and \mathbf {W}\in \mathbb {S}^{n}, we have \sigma (\mathbf {V}) \subseteq [-1, 1] and \Vert \mathbf {V}\Vert _{2} \leqslant 1.\hfill\blacklozenge

Remark 3:

In the context of Proposition 1, the corresponding subspaces for \mathbf {F} and \mathbf {V} are \mathcal {N}(\mathbf {A}) and \mathcal {N}(\mathbf {I}-\mathbf {W}) \oplus \mathcal {N}(\mathbf {W}), respectively. Thus, \Vert \mathbf {F}\boldsymbol{z}\Vert _{2} < \Vert \boldsymbol{z}\Vert _{2} for all \boldsymbol{z}\in \mathbb {R}^{n} \setminus \mathcal {N}(\mathbf {A}), and \Vert \mathbf {V}\boldsymbol{z}\Vert _{2} < \Vert \boldsymbol{z}\Vert _{2} for all \boldsymbol{z}\in \mathbb {R}^{n} \setminus (\mathcal {N}(\mathbf {I}-\mathbf {W}) \oplus \mathcal {N}(\mathbf {W})). \hfill\blacklozenge

Proof of Theorem 3:

(\Rightarrow): Suppose there exists \mathbf {0}\ne \boldsymbol{x}\in \mathcal {N}(\mathbf {I}-\mathbf {W}) \cap \mathcal {N}(\mathbf {A}). From \boldsymbol{x}\in \mathcal {N}(\mathbf {I}-\mathbf {W}), we get \mathbf {V}\boldsymbol{x}= \boldsymbol{x}; and from \boldsymbol{x}\in \mathcal {N}(\mathbf {A}), we have \mathbf {F}\boldsymbol{x}= \boldsymbol{x}. Consequently, using (1), we get \mathbf {J}\boldsymbol{x}=\boldsymbol{x} and \mathbf {R}\boldsymbol{x}=\boldsymbol{x}, which contradicts \Vert \mathbf {R}\Vert _{2} < 1.

(\Leftarrow): Let \mathbb {W}:= \mathcal {N}(\mathbf {I}-\mathbf {W}) \oplus \mathcal {N}(\mathbf {W}). For any \boldsymbol{x}\in \mathbb {R}^{n} \setminus \lbrace \mathbf {0}\rbrace, we consider the following exhaustive cases.

  • Case (\boldsymbol{x}\notin \mathbb {W}). It follows from Remarks 2 and 3 that \begin{equation*} \Vert \mathbf {J}\boldsymbol{x}\Vert _{2} \leqslant \Vert \mathbf {V}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2}. \end{equation*} View SourceRight-click on figure for MathML and additional features.Therefore, using (1), \Vert \mathbf {R}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2}.

  • Case (\boldsymbol{x}\in \mathbb {W}). This means \boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z} where \boldsymbol{y}\in \mathcal {N}(\mathbf {I}-\mathbf {W}) and \boldsymbol{z}\in \mathcal {N}(\mathbf {W}). There are two subcases: (i) \mathbf {V}\boldsymbol{x}\notin \mathcal {N}(\mathbf {A}), and (ii) \mathbf {V}\boldsymbol{x}\in \mathcal {N}(\mathbf {A}). In subcase-(i), it follows from (1) and Remark 3 that \Vert \mathbf {J}\boldsymbol{x}\Vert _{2} < \Vert \mathbf {V}\boldsymbol{x}\Vert _{2} \leqslant \Vert \boldsymbol{x}\Vert _{2}; thus, \Vert \mathbf {R}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2}.

    In subcase-(ii), since \mathcal {N}(\mathbf {I}-\mathbf {W}) \cap \mathcal {N}(\mathbf {A}) = \lbrace \mathbf {0}\rbrace, we claim that \boldsymbol{z}\ne \mathbf {0}. Note that \mathbf {V}\boldsymbol{x}= \boldsymbol{y}-\boldsymbol{z}. Thus, if \boldsymbol{z}= \mathbf {0}, we have \mathbf {V}\boldsymbol{x}=\boldsymbol{y}\in \mathcal {N}(\mathbf {I}-\mathbf {W}) \cap \mathcal {N}(\mathbf {A}) which contradicts \mathcal {N}(\mathbf {I}-\mathbf {W}) \cap \mathcal {N}(\mathbf {A}) = \lbrace \mathbf {0}\rbrace. Notice that since \mathbf {V}\boldsymbol{x}\in \mathcal {N}(\mathbf {A}), we have \mathbf {F}(\mathbf {V}\boldsymbol{x})=\mathbf {V}\boldsymbol{x}. Subsequently, using (1) and \mathbf {V}\boldsymbol{x}= \boldsymbol{y}-\boldsymbol{z}, we get \begin{equation*} \mathbf {R}\boldsymbol{x}= \frac{1}{2}(\boldsymbol{x}+ \mathbf {J}\boldsymbol{x}) = \frac{1}{2}(\boldsymbol{x}+ \mathbf {V}\boldsymbol{x}) = \boldsymbol{y}. \tag{2} \end{equation*} View SourceRight-click on figure for MathML and additional features.Since \mathbf {W}\in \mathbb {S}^{n}, we have \Vert \boldsymbol{x}\Vert ^{2}=\Vert \boldsymbol{y}\Vert _{2}^{2} + \Vert \boldsymbol{z}\Vert _{2}^{2}. Therefore, it follows from (2) and \boldsymbol{z}\ne \mathbf {0} that \Vert \mathbf {R}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2}.

We have shown that \Vert \mathbf {R}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2} for all \boldsymbol{x}\in \mathbb {R}^{n} \setminus \lbrace \mathbf {0}\rbrace; hence, \Vert \mathbf {R}\Vert _{2} < 1.\blacksquare

References

References is not available for this document.