In this note, we rectify mistakes in the proof of [1, Lemma 1] and the statement of [1, Th. 2]. The “necessity” part in the proof of [1, Lemma 1] is incorrect, which is rectified below.
Proof of [1, Lemma 1]:
\begin{equation*}
\Vert \mathbf {M}(\mathbf {N}\boldsymbol{u})\Vert _{2}^{2} = \Vert \mathbf {N}\boldsymbol{u}\Vert _{2}^{2} = \Vert \boldsymbol{x}\Vert _{2}^{2} = \Vert \boldsymbol{y}\Vert _{2}^{2} + \Vert \boldsymbol{z}\Vert _{2}^{2} = \Vert \boldsymbol{u}\Vert _{2}^{2},
\end{equation*}
Theorem 1 ([1, Th. 2]):
Let
For the ease of reference, we recall that [1, Eq. (8)]
\begin{align*}
\mathbf {R}=& \frac{1}{2}(\mathbf {I}+ \mathbf {J}), \quad \mathbf {J}= \mathbf {F}\mathbf {V}, \tag{1a}\\
\mathbf {F}=& 2(\mathbf {I}+ \rho \mathbf {A}^\top \mathbf {A}) ^{-1} - \mathbf {I},\quad \mathbf {V}= (2\mathbf {W}-\mathbf {I}). \tag{1b}
\end{align*}
Theorem 2:
Let
We next give an equivalent condition for
Theorem 3:
Let
Remark 1:
The condition in Theorem 3 is weaker than the sufficient condition in Theorem 2. In fact, the condition in Theorem 3 is identical to the equivalent condition in [1, Th. 1] for the contractivity of PnP-ISTA operator.
In the light of Theorem 3, we can drop the nonsingularity assumption on
Corollary 1:
Let
We now prove Theorem 3, starting with some preliminaries. We recall the result [1, Proposition A.1] from the supplement.
Proposition 1:
Let
Remark 2:
Notice from (1b) that
Remark 3:
In the context of Proposition 1, the corresponding subspaces for
Proof of Theorem 3:
Case
It follows from Remarks 2 and 3 that(\boldsymbol{x}\notin \mathbb {W}). Therefore, using (1),\begin{equation*} \Vert \mathbf {J}\boldsymbol{x}\Vert _{2} \leqslant \Vert \mathbf {V}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2}. \end{equation*} View Source\begin{equation*} \Vert \mathbf {J}\boldsymbol{x}\Vert _{2} \leqslant \Vert \mathbf {V}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2}. \end{equation*}
.\Vert \mathbf {R}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2} Case
This means(\boldsymbol{x}\in \mathbb {W}). where\boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z} and\boldsymbol{y}\in \mathcal {N}(\mathbf {I}-\mathbf {W}) . There are two subcases: (i)\boldsymbol{z}\in \mathcal {N}(\mathbf {W}) , and (ii)\mathbf {V}\boldsymbol{x}\notin \mathcal {N}(\mathbf {A}) . In subcase-(i), it follows from (1) and Remark 3 that\mathbf {V}\boldsymbol{x}\in \mathcal {N}(\mathbf {A}) ; thus,\Vert \mathbf {J}\boldsymbol{x}\Vert _{2} < \Vert \mathbf {V}\boldsymbol{x}\Vert _{2} \leqslant \Vert \boldsymbol{x}\Vert _{2} .\Vert \mathbf {R}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2} In subcase-(ii), since
, we claim that\mathcal {N}(\mathbf {I}-\mathbf {W}) \cap \mathcal {N}(\mathbf {A}) = \lbrace \mathbf {0}\rbrace . Note that\boldsymbol{z}\ne \mathbf {0} . Thus, if\mathbf {V}\boldsymbol{x}= \boldsymbol{y}-\boldsymbol{z} , we have\boldsymbol{z}= \mathbf {0} which contradicts\mathbf {V}\boldsymbol{x}=\boldsymbol{y}\in \mathcal {N}(\mathbf {I}-\mathbf {W}) \cap \mathcal {N}(\mathbf {A}) . Notice that since\mathcal {N}(\mathbf {I}-\mathbf {W}) \cap \mathcal {N}(\mathbf {A}) = \lbrace \mathbf {0}\rbrace , we have\mathbf {V}\boldsymbol{x}\in \mathcal {N}(\mathbf {A}) . Subsequently, using (1) and\mathbf {F}(\mathbf {V}\boldsymbol{x})=\mathbf {V}\boldsymbol{x} , we get\mathbf {V}\boldsymbol{x}= \boldsymbol{y}-\boldsymbol{z} Since\begin{equation*} \mathbf {R}\boldsymbol{x}= \frac{1}{2}(\boldsymbol{x}+ \mathbf {J}\boldsymbol{x}) = \frac{1}{2}(\boldsymbol{x}+ \mathbf {V}\boldsymbol{x}) = \boldsymbol{y}. \tag{2} \end{equation*} View Source\begin{equation*} \mathbf {R}\boldsymbol{x}= \frac{1}{2}(\boldsymbol{x}+ \mathbf {J}\boldsymbol{x}) = \frac{1}{2}(\boldsymbol{x}+ \mathbf {V}\boldsymbol{x}) = \boldsymbol{y}. \tag{2} \end{equation*}
, we have\mathbf {W}\in \mathbb {S}^{n} . Therefore, it follows from (2) and\Vert \boldsymbol{x}\Vert ^{2}=\Vert \boldsymbol{y}\Vert _{2}^{2} + \Vert \boldsymbol{z}\Vert _{2}^{2} that\boldsymbol{z}\ne \mathbf {0} .\Vert \mathbf {R}\boldsymbol{x}\Vert _{2} < \Vert \boldsymbol{x}\Vert _{2}