Loading [MathJax]/extensions/MathMenu.js
A Unified Deep Learning Network for Remote Sensing Image Registration and Change Detection | IEEE Journals & Magazine | IEEE Xplore

A Unified Deep Learning Network for Remote Sensing Image Registration and Change Detection


Abstract:

Image registration and change detection are crucial for multitemporal remote sensing image analysis. The images should be registered before the change information detecti...Show More

Abstract:

Image registration and change detection are crucial for multitemporal remote sensing image analysis. The images should be registered before the change information detection. Existing deep learning methods have shown significant advantages in image registration and change detection tasks. They usually design two independent task-specific deep networks for image registration and change detection, respectively. These independent deep networks will learn from scratch and rely on many task-specific labeled training datasets. This article finds that image registration and change detection have similar learning mechanisms, which focus on extracting discriminative features. Inspired by this, we propose a Unified image Registration and Change detection Network (URCNet) that can perform image alignment and change information detection through a single network. Additionally, this article proposes various deep collaborative learning methods for URCNet optimization, which enforce that the URCNet can effectively support remote sensing image registration and change detection simultaneously. Extensive experiments demonstrate the effectiveness of the proposed URCNet for image registration and change detection, which can achieve comparable and better results with task-specific and more complex deep networks. The proposed URCNet can support multitasks based on the same scene images, different scene images, and even multimodal images. Moreover, URCNet shows significant advantages over other deep networks in change detection under limited labeled datasets.
Article Sequence Number: 5101216
Date of Publication: 19 December 2023

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Image registration and change detection are crucial for remote sensing image applications, such as land resource management and disaster information estimation [1], [2]. Image registration focuses on aligning images acquired at different times, from different viewpoints, or by various sensors [3], [4], which is widely used for multitemporal image analysis, multiview image processing, and multimodal image fusion. Image change detection task aims to identify the change information between the aligned multitemporal images [5], [6]. Thus, image registration is the basis of change detection.

Select All
1.
D. M. Tralli, R. G. Blom, V. Zlotnicki, A. Donnellan and D. L. Evans, "Satellite remote sensing of earthquake volcano flood landslide and coastal inundation hazards", ISPRS J. Photogramm. Remote Sens., vol. 59, no. 4, pp. 185-198, Jun. 2005.
2.
C. J. Van Westen, "Remote sensing and GIS for natural hazards assessment and disaster risk management", Treatise Geomorphol., vol. 3, pp. 259-298, Mar. 2013.
3.
B. Zitová and J. Flusser, "Image registration methods: A survey", Image Vis. Comput., vol. 21, no. 11, pp. 977-1000, Oct. 2003.
4.
R. Feng, H. Shen, J. Bai and X. Li, "Advances and opportunities in remote sensing image geometric registration: A systematic review of state-of-the-art approaches and future research directions", IEEE Geosci. Remote Sens. Mag., vol. 9, no. 4, pp. 120-142, Dec. 2021.
5.
N. Bourdis, D. Marraud and H. Sahbi, "Constrained optical flow for aerial image change detection", Proc. IEEE Int. Geosci. Remote Sens. Symp., pp. 4176-4179, Jul. 2011.
6.
Q. Shi, M. Liu, S. Li, X. Liu, F. Wang and L. Zhang, "A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection", IEEE Trans. Geosci. Remote Sens., vol. 60, 2022.
7.
J. P. W. Pluim, J. B. A. Maintz and M. A. Viergever, "Mutual-information-based registration of medical images: A survey", IEEE Trans. Med. Imag., vol. 22, no. 8, pp. 986-1004, Aug. 2003.
8.
Y. Wu, W. Ma, M. Gong, L. Su and L. Jiao, "A novel point-matching algorithm based on fast sample consensus for image registration", IEEE Geosci. Remote Sens. Lett., vol. 12, no. 1, pp. 43-47, Jan. 2015.
9.
D. G. Lowe, "Distinctive image features from scale-invariant keypoints", Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.
10.
H. Bay, A. Ess, T. Tuytelaars and L. Van Gool, "Speeded-up robust features (SURF)", Comput. Vis. Image Understand., vol. 110, no. 3, pp. 346-359, Jun. 2008.
11.
S. Suri, P. Schwind, J. Uhl and P. Reinartz, "Modifications in the SIFT operator for effective SAR image matching", Int. J. Image Data Fusion, vol. 1, no. 3, pp. 243-256, Sep. 2010.
12.
F. Dellinger, J. Delon, Y. Gousseau, J. Michel and F. Tupin, "SAR-SIFT: A SIFT-like algorithm for SAR images", IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 453-466, Jan. 2015.
13.
G. Yu and J.-M. Morel, "ASIFT: An algorithm for fully affine invariant comparison", Image Process. Line, vol. 1, pp. 11-38, Feb. 2011.
14.
E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua and F. Moreno-Noguer, "Discriminative learning of deep convolutional feature point descriptors", Proc. IEEE Int. Conf. Comput. Vis. (ICCV), pp. 118-126, Dec. 2015.
15.
A. Mishchuk, D. Mishkin, F. Radenovic and J. Matas, "Working hard to know your neighbor’s margins: Local descriptor learning loss", arXiv:1705.10872, 2017.
16.
J. Ma, X. Jiang, A. Fan, J. Jiang and J. Yan, "Image matching from handcrafted to deep features: A survey", Int. J. Comput. Vis., vol. 129, no. 1, pp. 23-79, Jan. 2021.
17.
M. P. S. Tondewad and M. M. P. Dale, "Remote sensing image registration methodology: Review and discussion", Proc. Comput. Sci., vol. 171, pp. 2390-2399, Jan. 2020.
18.
P. Bunting, R. Lucas and F. Labrosse, "An area based technique for image-to-image registration of multi-modal remote sensing data", Proc. IEEE Int. Geosci. Remote Sens. Symp., pp. 212, Jul. 2008.
19.
X. Tong et al., "Image registration with Fourier-based image correlation: A comprehensive review of developments and applications", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 10, pp. 4062-4081, Oct. 2019.
20.
D. G. Lowe, "Object recognition from local scale-invariant features", Proc. 7th IEEE Int. Conf. Comput. Vis., pp. 1150-1157, Sep. 1999.
21.
M. Wyawahare, P. Patil and H. Abhyankar, "Image registration techniques: An overview", Int. J. Signal Process. Image Process. Pattern Recognit., vol. 2, no. 3, pp. 11-28, 2009.
22.
E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient alternative to SIFT or SURF", Proc. Int. Conf. Comput. Vis., pp. 2564-2571, Nov. 2011.
23.
D. Hong et al., "More diverse means better: Multimodal deep learning meets remote-sensing imagery classification", IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 4340-4354, May 2021.
24.
J. Yao, B. Zhang, C. Li, D. Hong and J. Chanussot, "Extended vision transformer (ExViT) for land use and land cover classification: A multimodal deep learning framework", IEEE Trans. Geosci. Remote Sens., vol. 61, Jun. 2023.
25.
D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza and J. Chanussot, "Graph convolutional networks for hyperspectral image classification", IEEE Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 5966-5978, Jul. 2021.
26.
H. Zhou, F. Luo, H. Zhuang, Z. Weng, X. Gong and Z. Lin, "Attention multihop graph and multiscale convolutional fusion network for hyperspectral image classification", IEEE Trans. Geosci. Remote Sens., vol. 61, 2023.
27.
T. Guo, R. Wang, F. Luo, X. Gong, L. Zhang and X. Gao, "Dual-view spectral and global spatial feature fusion network for hyperspectral image classification", IEEE Trans. Geosci. Remote Sens., vol. 61, May 2023.
28.
F. Luo, T. Zhou, J. Liu, T. Guo, X. Gong and J. Ren, "Multiscale diff-changed feature fusion network for hyperspectral image change detection", IEEE Trans. Geosci. Remote Sens., vol. 61, Jan. 2023.
29.
C. Li, B. Zhang, D. Hong, J. Yao and J. Chanussot, "LRR-Net: An interpretable deep unfolding network for hyperspectral anomaly detection", IEEE Trans. Geosci. Remote Sens., vol. 61, May 2023.
30.
N. Huyan, X. Zhang, D. Quan, J. Chanussot and L. Jiao, "Cluster-memory augmented deep autoencoder via optimal transportation for hyperspectral anomaly detection", IEEE Trans. Geosci. Remote Sens., vol. 60, Jun. 2022.

Contact IEEE to Subscribe

References

References is not available for this document.