Loading [MathJax]/extensions/MathMenu.js
Segmentation Pseudolabel Generation Using the Multiple Instance Learning Choquet Integral | IEEE Journals & Magazine | IEEE Xplore

Segmentation Pseudolabel Generation Using the Multiple Instance Learning Choquet Integral


Abstract:

Weakly supervised target detection and semantic segmentation (WSSS) approaches aim at learning object or pixel-level classification labels from imprecise, uncertain, or a...Show More

Abstract:

Weakly supervised target detection and semantic segmentation (WSSS) approaches aim at learning object or pixel-level classification labels from imprecise, uncertain, or ambiguous data annotations. A crucial step in WSSS is to produce pseudolabels, which can be used to train a fully supervised semantic classifier. Post hoc attention mechanisms, such as class activation mapping (CAM), are commonly used to produce these pseudolabels. While traditional CAM methods derive feature importance from heuristics on gradient information, this work alternatively investigates whether a subset of discriminative activation feature maps can be down-selected and fused to improve pseudolabel accuracy. More specifically, the multiple instance Choquet integral (MICI) [1] was explored as a method for discriminative feature selection and fusion. Experimental results on both synthetic and real-world datasets indicate the utility of the MICI in down-selecting class-discriminative activation feature maps. Fusion of the MICI-selected sources was competitive to CAM methods for generating pseudolabels.
Published in: IEEE Transactions on Fuzzy Systems ( Volume: 32, Issue: 4, April 2024)
Page(s): 1927 - 1937
Date of Publication: 30 November 2023

ISSN Information:

References is not available for this document.

I. Introduction

Weakly supervised semantic segmentation (WSSS) approaches attempt to learn pixel-level classification labels from weak data annotations. Instead of training an end-to-end model from scratch, WSSS approaches typically refine the outputs of a strong, pretrained classifier (post hoc). As shown in Fig. 1, post hoc approaches for WSSS typically operate in four stages.

Select All
1.
X. Du and A. Zare, "Multiple instance Choquet integral classifier fusion and regression for remote sensing applications", IEEE Trans. Geosci. Remote Sens., vol. 57, no. 5, pp. 2741-2753, May 2019.
2.
M. Tan and Q. V. Le, "EfficientNet: Rethinking model scaling for convolutional neural networks", Proc. 36th Int. Conf. Mach. Learn., pp. 6105-6114, 2019.
3.
S. Xie, R. B. Girshick, P. Dollár, Z. Tu and K. He, "Aggregated residual transformations for deep neural networks", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 5987-5995, 2017.
4.
P.-T. Jiang, C.-B. Zhang, Q. Hou, M.-M. Cheng and Y. Wei, "LayerCAM: Exploring hierarchical class activation maps for localization", IEEE Trans. Image Process., vol. 30, pp. 5875-5888, 2021.
5.
Q. Zheng, Z. Wang, J. Lu and J. Zhou, "Shap-CAM: Visual explanations for convolutional neural networks based on Shapley value", 2022, [online] Available: https://openreview.net/forum?id=C1lXY_T1LTs.
6.
H. Jung and Y. Oh, "Towards better explanations of class activation mapping", Proc. IEEE/CVF Int. Conf. Comput. Vis., pp. 1316-1324, 2021.
7.
Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng and T. S. Huang, "Revisiting dilated convolution: A simple approach for weakly- and semi-supervised semantic segmentation", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 7268-7277, Jun. 2018.
8.
A. Kolesnikov and C. H. Lampert, "Seed expand and constrain: Three principles for weakly-supervised image segmentation", Proc. Eur. Conf. Comput. Vis., pp. 695-711, 2016.
9.
J. Ahn and S. Kwak, "Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4981-4990, 2018.
10.
O. Ronneberger, P. Fischer and T. Brox, "U-net: Convolutional networks for biomedical image segmentation", Proc. Med. Image Comput. Comput.- Assist. Intervention, pp. 234-241, 2015.
11.
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, "DeepLab: Semantic image segmentation with deep convolutional nets atrous convolution and fully connected CRFs", IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834-848, Apr. 2018.
12.
X. Du, A. Zare and D. T. Anderson, "Multiple instance Choquet integral with binary fuzzy measures for remote sensing classifier fusion with imprecise labels", Proc. IEEE Symp. Ser. Comput. Intell., pp. 1154-1162, 2019.
13.
A. Bearman, O. Russakovsky, V. Ferrari and L. Fei-Fei, "What's the point: Semantic segmentation with point supervision", Proc. Eur. Conf. Comput. Vis., pp. 549-565, 2016.
14.
Z. Li, Q. Chen and V. Koltun, "Interactive image segmentation with latent diversity", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 577-585, 2018.
15.
D. Batra, A. Kowdle, D. Parikh, J. Luo and T. Chen, "iCoseg: Interactive co-segmentation with intelligent scribble guidance", Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 3169-3176, 2010.
16.
D. Lin, J. Dai, J. Jia, K. He and J. Sun, "ScribbleSup: Scribble-supervised convolutional networks for semantic segmentation", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3159-3167, 2016.
17.
J. Dai, K. He and J. Sun, "BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation", Proc. IEEE Int. Conf. Comput. Vis., pp. 1635-1643, 2015.
18.
G. Papandreou, L. Chen, K. Murphy and A. L. Yuille, "Weakly- and semi-supervised learning of a DCNN for semantic image segmentation", Proc. IEEE Int. Conf. Comput. Vis., pp. 1742-1750, 2015.
19.
K. Simonyan, A. Vedaldi and A. Zisserman, "Deep inside convolutional networks: Visualising image classification models and saliency maps", Proc. Int. Conf. Learn. Representations, pp. 1-8, 2014.
20.
J. T. Springenberg, A. Dosovitskiy, T. Brox and M. A. Riedmiller, "Striving for simplicity: The all convolutional net", Proc. 3rd Int. Conf. Learn. Representations, May 2015.
21.
S. Jetley, N. A. Lord, N. Lee and P. H. S. Torr, "Learn to pay attention", Proc. 6th Int. Conf. Learn. Representations, 2018.
22.
B. Zhou, A. Khosla, À. Lapedriza, A. Oliva and A. Torralba, "Learning deep features for discriminative localization", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2921-2929, 2016.
23.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, "Grad-CAM: Visual explanations from deep networks via gradient-based localization", Proc. IEEE Int. Conf. Comput. Vis., pp. 618-626, 2017.
24.
A. Chattopadhay, A. Sarkar, P. Howlader and V. N. Balasubramanian, "Grad-CAM : Generalized gradient-based visual explanations for deep convolutional networks", Proc. IEEE Winter Conf. Appl. Comput. Vis., pp. 839-847, 2018.
25.
H. Wang, M. Du, F. Yang and Z. Zhang, "Score-CAM: Improved visual explanations via score-weighted class activation mapping", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2921-2929, 2020.
26.
J. Xie, J. Xiang, J. Chen, X. Hou, X. Zhao and L. Shen, "C2AM: Contrastive learning of class-agnostic activation map for weakly supervised object localization and semantic segmentation", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 989-998, 2022.
27.
Z. Chen, T. Wang, X. Wu, X.-S. Hua, H. Zhang and Q. Sun, "Class re-activation maps for weakly-supervised semantic segmentation", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 969-978, 2022.
28.
R. Xu, C. Wang, S. Xu, W. Meng and X. Zhang, "Wave-like class activation map with representation fusion for weakly-supervised semantic segmentation", IEEE Trans. Multimedia, pp. 1-13, 2023.
29.
X. Zhou, Y. Li, G. Cao and W. Cao, "Master-CAM: Multi-scale fusion guided by master map for high-quality class activation maps", Displays, vol. 76, 2023, [online] Available: https://www.sciencedirect.com/science/article/pii/S0141938222001573.
30.
C. Labreuche and M. Grabisch, "The choquet integral for the aggregation of interval scales in multicriteria decision making", Fuzzy Sets Syst., vol. 137, no. 1, pp. 11-26, 2003.

Contact IEEE to Subscribe

References

References is not available for this document.