Introduction
Spatial diversity techniques can overcome the channel fading phenomenon’s ill effects in wireless communication systems. Cooperative relaying helps us achieve spatial diversity, improving the throughput and reliability of wireless communication by forming a virtual antenna array [1]. In an elementary cooperative system, a source node communicates with the destination
A. Literature Review
Several BA cooperative relaying scenarios have been covered in the literature [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. Authors in [11] compared fixed and selective scheduling for the BA system. Authors in [12], propose a max-max link selection strategy that helps achieve overall spatial diversity. A max-link selection strategy is described in [13], where the link with the highest channel gain is chosen to transmit or receive a data packet at every time slot; this protocol helps us to achieve a diversity order of twice the number of relaying nodes but adds an additional packet delay. Authors in [14] discuss the link selection strategy based on the buffer state; in this protocol, authors prioritized link selection based on the buffer status. A hybrid link selection approach is presented in [15], which combines max-link and max-max link selection strategies. In [16], authors discussed a link selection strategy in which the
A few more BA setups with imperfect configurations have been discussed in [18], [19], [20], [21]. In [18], authors explore a BA relaying setup with outdated channel state information (CSI). In contrast, in [19], authors discussed a single relay setup with a BA relay suffering from self-interference. Authors in [20], [21] discussed the security aspect of the BA setup. In [20], authors analyzed a security aspect by considering the energy harvesting relays, while in [21], authors analyzed a secure communication system by taking out the ratios of all the available links and then selecting the link with the max ratio for the transmission or reception of data. An NBA system using the Markov chain (MC) approach for the formation of energy states is analyzed in [22]; the only relay in the system is the energy harvesting relay, and it uses energy queues instead of data packets for the formation of MC states.
Moreover, most practical cooperative relaying scenarios consider that perfect knowledge of the channel state of all the communicating links is available to different nodes; this assumption is practically non-feasible, so for such cases, different single differential modulation (SDM) schemes for cooperative communication have been discussed in the literature [23], [24]. The SDM assumes that the channel remains constant for at least two consecutive intervals, and it helps with communication, even without perfect knowledge of the CSI. It is noteworthy, too, that, in wireless cooperative systems, transceiver nodes may be mobile, due to which the problem of carrier frequency offset (CFO) may arise. Hence, the channel state does not remain constant over two consecutive time intervals. Thus, SDM suffers huge performance loss [25] because of the imperfect CFO compensation. Double differential modulation (DDM) is useful in such a scenario, as DDM avoids the need for CSI and CFO estimation; therefore, DD-encoded data can be decoded without their knowledge. The fundamental difference between SDM and DDM is that DDM uses three consecutively received data samples to decode the transmitted symbol. In other words, two levels of a single differential scheme are employed [26].
Implementation of DDM for different relaying protocols has been carried out in [27], [28], [29]. A low complexity piecewise linear (PL) decoder for the coherent system is explained in [30], and its differential counterpart is given in [31]; in both cases, PL decoder significantly improves the BER performance of the system. In [32], DDM is used in which relays employ cyclic redundancy bits and forward the data only when there is no decoding error; this helps reduce decoding error; however, the overall data rate is reduced. Authors in [33], introduced a DF cooperative system with DDM employs a PL detector and established analytically that the PL decoder achieves full diversity. Authors in [34], discussed the DD transmission for AF two-way relaying nodes. Also, in [35], authors examined the DDM approach for the mobile wireless sensor networks with multiple CFOs, while in [36], authors used DDM for Leo-based land mobile satellite communication.
B. Novelty and Contributions
In wireless communication networks, obtaining the perfect CSI is a challenging task, and it further becomes more difficult in a multi-node system as the overall training requirement grows with increasing nodes. Furthermore, in communication systems where nodes are mobile, the problem of CFO exists due to the relative movement of nodes. The channel estimation may lead to a significant error floor for such a system due to the imperfect CFO compensation [25]. In such scenarios, the DDM scheme is useful as it allows the receiver to bypass the CFO estimation along with CSI; hence, DDM does not encounter any residual CFO problems due to a well-designed DD receiver. Moreover, it is well known that BA coherent relaying systems can improve the performance of wireless systems by offering us the liberty to select the max-link at any given instant. Buffers at the relay nodes help us store the data whenever the link faces an outage, thereby avoiding packet drop. Hence, we concur that by combining BA relaying with the DDM-based scheme, we can inherit the benefits of both of them. Specifically, the main advantages we can obtain by combining the DDM-based scheme with the BA-relaying are as follows:
Narrow down the 6 dB SNR gap, which was earlier observed for the NBA DDM-based scheme.
With the help of a DDM-based scheme, we can communicate even without the knowledge of CSI and CFO.
In the presence of a CFO, the considered system might outperform the existing coherent BA relaying scheme.
The key idea of this work is to study wireless BA cooperative relaying, where the transceiver nodes may be mobile, leading to time-varying channels because of the presence of a CFO. Due to the time-varying nature of the wireless channels, the existing coherent BA protocols are either not applicable or offer poor performance for the considered CFO-perturbed cooperative networks. Since DDM offers a satisfactory performance in the presence of a CFO in a cooperative network, it is envisaged that the multiple relay DDM-based BA system can overcome the problem of CFO and CSI estimation. Nevertheless, the necessary performance improvement cannot be merely achieved by adding a buffer to relays; hence, a modified link selection mechanism that complies with the requirements of DDM is needed in a DDM-based BA relaying. Specifically, the important contributions of the presented work can be summed up as follows:
A
relay BA cooperative setup using DDM with a buffer size$K$ is proposed.$L$ A comprehensive link selection technique based on the buffer status and link quality is proposed; also, a novel index-based approach is proposed that satisfies the prerequisites of DDM and helps in encoding and decoding the received signals.
The closed-form expressions of ABER and outage probability are derived, and the derived results are then compared with the coherent counterparts.
The system’s ABER performance is further examined for a different set of values of
, power allocation factor, and relay location. In the presence of the CFO, the proposed multiple relay DDM-based BA system outperforms the coherent BA setup.$K$ Additionally, the proposed scheme closes down the 6dB signal-to-noise ratio (SNR) gap between the DDM and coherent systems that have been previously reported in the literature.
The remainder of the article is structured as follows: A discussion of DDM-based BA relaying and the proposed protocol are both carried out in Section II. The performance analysis of the proposed setup is covered in Section III. Section IV covers numerical results and discusses the proposed DDM-based BA relaying. Section V serves as the paper’s conclusion and provides the future directions of the proposed work.
Buffer-Aided Double Differential Relaying
This Section proposes a DDM-based relaying setup with the BA relay nodes. Firstly, we discussed the system model used, then we discussed the DDM, and finally, we proposed the novel index-based transmission and reception protocol for DDM-based BA relaying.
A. System Model
A dual-hop cooperative relaying DDM-based system is depicted in Fig. 1; it consists of a source node
It is assumed that all the relays exist in a cluster, which is placed exactly in between the
The system experiences an independent and identically distributed Rayleigh-block fading, i.e., the channel remains unchanged for a fixed time frame of size
B. Double Differential Modulation
Fig. 2a shows the DD encoding of the data at the source node. The equation for the DDM signal at \begin{align*} v(t)=v(t-1)p(t);p(t)=p(t-1)x(t),\, t=0,\,1,\,\ldots, \,T, \tag{1}\end{align*}
\begin{equation*} y_{_{R_{k}}}(t)=h_{_{SR_{k}}}e^{jtw_{_{R_{k}}}}v(t)+e_{_{R_{k}}}, \tag{2}\end{equation*}
\begin{equation*} x_{_{R_{k}}}(l)=\text {arg}\,\underset {x\in \Xi }{\text {max}}\,\text {Re}\,\left \{{Y_{_{R_{k}}}^{\ast}(l)Y_{_{R_{k}}}^{\ast}(l-1)x(l)}\right \}, \tag{3}\end{equation*}
\begin{equation*} x_{_{R_{k}}}(l)=\text {arg}\,\underset {x(l)\in \Xi }{\text {max}}\,\text {Re}\,\left \{{y_{_{R_{k}}}^{\ast}(l)y_{_{R_{k}}}^{\ast}(l-2)y_{_{R_{k}}}^{2}(l-1)x(l)}\right \}. \tag{4}\end{equation*}
\begin{align*} v_{_{R_{k}}}(l)=&v_{_{R_{k}}}(l-1)p(l);p_{_{R_{k}}}(l) \\=&p_{_{R_{k}}}(l-1)x_{_{R_{k}}}(l);\,\,l=0,\,1,\,\ldots, \,T. \tag{5}\end{align*}
\begin{equation*} y_{D}(l)=h_{_{R_{k}D}}e^{jlw_{_{D}}}v_{R}(l)+e_{_{D}}(l), \tag{6}\end{equation*}
\begin{align*} p_{y_{_{D}}}\left [{y_{_{D}}|y_{_{D}}(l-1)}\right]=&\mathbf {\epsilon }p_{y_{_{D}}}\left ({y_{{_{D}}}|y_{{_{D}}}(l-1)}\right),x_{_{R}}(l)\neq x(l) \\&+ \left ({1-\mathbf {\epsilon }}\right)p_{y_{_{D}}}\left ({y_{{_{D}}}|y_{{_{D}}}(l-1)}\right),x_{_{R}}(l)= x(l), \tag{7}\end{align*}
\begin{equation*} f\left ({t_{_{1}}(m)}\right)=\text {ln}\left [{\frac {\left ({1-\mathbf {\epsilon }_{m}}\right) e^{t_{{_{1}}}(m)}+\mathbf {\epsilon }_{m}}{\mathbf {\epsilon }_{m}e^{t_{{_{1}}}(m)}+\left ({1-\mathbf {\epsilon }_{m}}\right)}}\right], \tag{8}\end{equation*}
\begin{equation*} t_{{_{1}}}(m)=\frac {2\text {Re}\left \{{y_{_{D}}^{\ast}(l)y_{_{D}}^{2}(l-1)y_{_{D}}^{\ast}\left ({l-2}\right.}\right \}}{3|y_{_{D}}(l-1)|^{2} N_{0}}. \tag{9}\end{equation*}
\begin{align*} f_{_{PL}}\left ({t_{_{1}}(m)}\right)= \begin{cases} -T_{_{1}}(m),& \text {for }\, t_{_{1}}(m)< -T_{_{1}}(m), \\ T_{_{1}}(m),& \text {for }\, t_{_{1}}(m)>T_{_{1}}(m), \\ t_{_{1}}(m),& \text {for}\, -T_{_{1}}(m)< t_{_{1}}(m)< T_{_{1}}(m), \end{cases} \tag{10}\end{align*}
\begin{align*}&p_{_{t_{1}}}\left ({w|y_{_{D}}(l-1),x_{_{R}}(l)}\right)(m) \\&=\frac {3}{4}e^{-\left ({\frac {3|w|}{2}+\left ({\frac {3|w|+x_{_{R}}(r)w}{4|w|N_{2}}}\right)}\right)} \\&{}\times \sum _{k=0}^{\infty }\frac {|y_{_{D}}(l-1)|^{2k}\left ({|w|+x_{_{R}}w}\right)^{k}}{N_{2}^{k}k!4^{k}|w|^{k}} \\&{}\times \sum _{l=0}^{k}\frac {|3w|^{k-l}}{\Gamma (k-l+1)}L_{r}\left ({-\frac {|w|-x_{_{l}}(r)w}{4|w|N_{2}}|y_{_{D}}(l-1)|^{2}}\right), \tag{11}\end{align*}
C. Proposed Transmission-Reception Protocol
In the given system, we have divided the relay nodes into three groups, namely:
: Set with the cardinality of$\mathcal {I}_{1}$ and it contains relays with buffer status full.$|\mathcal {I}_{1}|$ : Set with the cardinality of$\mathcal {I}_{2}$ and it contains relays with buffer status empty.$|\mathcal {I}_{2}|$ : Set with the cardinality of$\mathcal {I}3$ and it contains relays with buffer status partially full.$|\mathcal {I}_{3}|$
After dividing relays into groups, the transmission/reception of data packets from/at R is carried out as follows:
For buffer status full, if the best
-$R$ link’s SNR is higher than the threshold$D$ ,$\gamma _{\text {th}}$ will use the best$R$ -$R$ link for transmitting the data packet to$D$ , for a fixed time frame$D$ . The bits inside the data packets are DD encoded and are indexed also so that received data can be decoded by$T$ .$D$ For buffer status empty, if the best
-$S$ link’s SNR is higher than the$R$ ,$\gamma _{\text {th}}$ will use the best$S$ -$S$ link for transmitting the data packet to$R$ , for a fixed time frame$R$ . The bits inside the data packets are DD encoded and are also indexed so that received data can be decoded by the selected relay node.$T$ Whenever the buffer is partially filled
•Step 1 shall be replicated in case the max
-$R$ link’s SNR is higher than$D$ .$\gamma _{\text {th}}$ •When the max
-$R$ link does not have SNR greater than$D$ , step 2 shall be replicated if max$\gamma _{\text {th}}$ -$S$ link’s SNR is bigger than$R$ .$\gamma _{\text {th}}$
We assume all channels are static for the proposed DDM-based system over intervals of at least three symbols. SNR is evaluated in a non-data-aided manner [40], [41]. Additionally, the suggested protocol solely relies on the relay’s buffer status to determine which relay is selected at any given time.
Remark 1:
The proposed link selection strategy uses packet-based data scheduling. However, the given approach differs from the available max-link strategies in that it adds an index to every transmitted data bit to keep track of the bits that have already been sent/received, which helps perform DD encoding/decoding at various communicating nodes. Also, by giving higher priority to
Performance Analysis
In this section, the proposed system’s outage and ABER performances are analyzed. The evolution of the buffer status is analyzed using the state transition matrix, which is modeled by utilizing the MC approach, whose state at any instance is determined by the total number of data packets available in the relay buffers. The total number of states in a system with
A. Steady State Probability
For evaluating the steady state probability of the given system, we should develop a state transition matrix A of \begin{equation*} P_{_{|\mathcal {I}_{1}|}}^{F}= \frac {1}{|\mathcal {I}_{1}|}\left [{1-\left [{1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{_{RD}}}}}\right]^{|\mathcal {I}_{1}|}}\right]\,. \tag{12}\end{equation*}
\begin{equation*} \overline {P}_{_{|\mathcal {I}_{1}|}}^{F}=\left [{1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{_{RD}}}}}\right]^{|\mathcal {I}_{1}|}\,\,. \tag{13}\end{equation*}
\begin{align*} P_{_{|\mathcal {I}_{2}|}}^{E}=&\frac {1}{|\mathcal {I}_{2}|}\left [{1-\left [{1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{_{SR}}}}}\right]^{|\mathcal {I}_{2}|}}\right]\, \text {and} \tag{14a}\\ \overline {P}_{|\mathcal {I}_{2}|}^{E}=&\left [{1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{_{SR}}}}}\right]^{|\mathcal {I}_{2}|}. \tag{14b}\end{align*}
\begin{align*} P_{_{|\mathcal {I}_{3}|,RD}}^{\mathcal {P}}=&\frac {1}{|\mathcal {I}_{3}|}\left [{1-\left [{1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{_{RD}}}}}\right]^{|\mathcal {I}_{3}|}}\right]\,\,\,\,\,\,\text {and} \tag{15a}\\ \overline {P}_{_{|\mathcal {I}_{3}|,RD}}^{\mathcal {P}}=&\left [{1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{_{RD}}}}}\right]^{|\mathcal {I}_{3}|}. \tag{15b}\end{align*}
\begin{align*} P_{_{|\mathcal {I}_{3}|,SR}}^{\mathcal {P}}=&\frac {1}{|\mathcal {I}_{3}|}\left [{1-\left [{1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{_{SR}}}}}\right]^{|\mathcal {I}_{3}|}}\right]\,\text {and} \tag{16a}\\ \overline {P}_{_{|\mathcal {I}_{3}|,SR}}^{\mathcal {P}}=&\left [{1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{_{SR}}}}}\right]^{|\mathcal {I}_{3}|}. \tag{16b}\end{align*}
\begin{align*} \boldsymbol {A}_{_{uv}}=\begin{cases} P_{|\mathcal {I}_{1}|}^{F}\,\text {if } s_{u} \in \mathcal {I}_{1} \\ P_{|\mathcal {I}_{2}|}^{E}\, \text {if } s_{u} \in \mathcal {I}_{2},\,\mathcal {I}_{1} = \phi \\ P_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}}\, \text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1}, \,\mathcal {I}_{2}=\phi \\ \overline {P}_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}} P_{|\mathcal {I}_{3}|,\,SR}^{\mathcal {P}},\,\text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1}, \,\mathcal {I}_{2}=\phi \\ \overline {P}_{|\mathcal {I}_{1}|}^{F}P_{|\mathcal {I}_{2}|}^{E},\text {if } s_{u} \in \mathcal {I}_{2},\,\mathcal {I}_{1}\neq \phi \\ \overline {P}_{|\mathcal {I}_{1}|}^{F}P_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}},\,\text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1}\neq \phi \\ \overline {P}_{|\mathcal {I}_{1}|}^{F}\overline {P}_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}} P_{|\mathcal {I}_{3}|,\,SR}^{\mathcal {P}},\,\text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1}\neq \phi. \\ \overline {P}_{|\mathcal {I}_{2}|}^{E}P_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}},\,\text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{2}\neq \phi \\ \overline {P}_{|\mathcal {I}_{2}|}^{E}\overline {P}_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}}P_{|\mathcal {I}_{3}|,\,SR}^{\mathcal {P}},\,\text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{2}\neq \phi \\ \overline {P}_{|\mathcal {I}_{1}|}^{F} \overline {P}_{|\mathcal {I}_{2}|}^{E} P_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}},\,\text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1},\mathcal {I}_{2}\neq \phi \\ \overline {P}_{|\mathcal {I}_{1}|}^{F} \overline {P}_{|\mathcal {I}_{2}|}^{E}\overline {P}_{|\mathcal {I}_{3}|,RD}^{\mathcal {P}} P_{|\mathcal {I}_{3}|,SR}^{\mathcal {P}},\,\text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1},\,\mathcal {I}_{2}\neq \phi \end{cases} \tag{17}\end{align*}
\begin{align*}&\boldsymbol {A}_{_{vv}} \\&=\begin{cases} \overline {P}_{|\mathcal {I}_{1}|}^{F},\,\text {if } s_{u}=s_{v},\,\mathcal {I}_{1}\neq \phi \\ \overline {P}_{|\mathcal {I}_{2}|}^{E},\,\text {if } s_{u}=s_{v},\,\mathcal {I}_{2} \neq \phi \\ \overline {P}_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}}\overline {P}_{|\mathcal {I}_{3}|,\,SR}^{\mathcal {P}},\,\text {if } s_{u}=s_{v},\,\mathcal {I}_{3}\neq \phi \\ \overline {P}_{|\mathcal {I}_{1}|}^{F}\overline {P}_{|\mathcal {I}_{2}|}^{E},\,\text {if } s_{u}=s_{v},\,\mathcal {I}_{1}\neq \phi,\,\,\mathcal {I}_{2} \neq \phi \,\,\,\,\,\,. \\ \overline {P}_{|\mathcal {I}_{1}|}^{F},\overline {P}_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}}\overline {P}_{|\mathcal {I}_{3}|,\,SR}^{\mathcal {P}},\,\text {if } s_{u}=s_{v},\,\mathcal {I}_{3}\neq \phi,\,\mathcal {I}_{1}\neq \phi \\ \overline {P}_{|\mathcal {I}2|}^{E},\overline {P}_{|\mathcal {I}_{3}|,\,RD}^{P}\overline {P}_{|\mathcal {I}_{3}|,\,SR}^{\mathcal {P}},\,\text {if } s_{u}=s_{v},\,\mathcal {I}_{3}\neq \phi,\,\mathcal {I}_{2}\neq \phi \\ \overline {P}_{|\mathcal {I}_{1}|}^{F},\overline {P}_{|\mathcal {I}2|}^{E}\overline {P}_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}}\overline {P}_{|\mathcal {I}_{3}|,\,SR}^{\mathcal {P}},\,\text {if } s_{u}=s_{v},\,\mathcal {I}_{1},\mathcal {I}_{2},\mathcal {I}_{1}\neq \phi \end{cases} \tag{18}\end{align*}
Irreducible: Every state of the MC is accessible regardless of from where we started.
Column stochastic: Evey column in the matrix
will have a sum of unity.$\boldsymbol {A}$ Aperiodic: Each state has a finite probability of an outage; hence each state has a finite probability of remaining in any state at any moment.
Because of these characteristics, we can express the steady-state probability for the considered setup as \begin{equation*} \boldsymbol {\pi } =\left ({\mathbf {A}-\mathbf {I}+\mathbf {B}}\right)^{-1}\mathbf {b}, \tag{19}\end{equation*}
\begin{equation*} P_{\text {out}}= \sum _{v=1}^{\mathcal {Z}} \pi _{v} A_{vv}=\text {diag}\left ({\mathbf {A}}\right)\boldsymbol {\pi }, \tag{20}\end{equation*}
B. ABER Analysis
While investigating the ABER of the proposed DDM configuration, it is assumed that data transmission across any link happens only when we have instantaneous SNR greater than \begin{equation*} f_{\gamma _{\varphi }}(y)=\frac {1}{\overline {\gamma }_{\varphi }}e^{-\frac {y}{\overline {\gamma }_{\varphi }}}, \tag{21}\end{equation*}
\begin{align*} f_{\Gamma _{\varphi }}(x)=\frac {\text {d}}{\text {d}x}\left [{\int _{0}^{x}\frac {1}{\overline {\gamma }_{\varphi }}e^{-\frac {y}{\overline {\gamma }_{\varphi }}} \text {d}y }\right]^{\mathcal {L}} =\frac {\mathcal {L}}{\overline {\gamma }_{\varphi }}e^{\frac {x}{\overline {\gamma }_{\varphi }}}\left [{1-e^{\frac {x}{\overline {\gamma }_{\varphi }}}}\right]^{\mathcal {L}-1}. \tag{22}\end{align*}
\begin{equation*} \overline {P}_{e_{\varphi }}\left ({\mathcal {L}}\right)= \frac {\int _{\gamma _{\text {th}}}^{\infty } P_{e_{\varphi }}(x)f_{\Gamma _{\varphi }}(x) \text {d}x}{\int _{\gamma _{\text {th}}}^{\infty } f_{_{\Gamma _{\varphi }}}(x)\text {d}x}. \tag{23}\end{equation*}
1) ABER analysis of $S$
-$R_{k}$
The expressions of the ABER of the \begin{align*} \overline {P}_{e_{SR}}\left ({\mathcal {M}}\right)=\frac {\int _{\gamma _{\text {th}}}^{\infty }Q\left ({\sqrt {2y}}\right)\frac {\mathcal {M}}{\overline {\gamma }_{SR}}e^{-\frac {y}{\overline {\gamma }_{SR}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{SR}}}}\right]^{\mathcal {M}-1}\text {d}y}{\int _{\gamma _{\text {th}}}^{\infty }\frac {\mathcal {M}}{\overline {\gamma }_{SR}}e^{-\frac {y}{\overline {\gamma }_{SR}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{SR}}}}\right]^{\mathcal {M}-1}\text {d}y}, \tag{24}\end{align*}
\begin{equation*} \overline {P}_{e_{SR}}\left ({\mathcal {M}}\right)=\frac {\int _{\gamma _{\text {th}}}^{\infty }\frac {\mathcal {M}}{\overline {\gamma }_{SR}}e^{-y}e^{-\frac {y}{\overline {\gamma }_{SR}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{SR}}}}\right]^{\mathcal {M}-1}\text {d}y}{2\int _{\gamma _{\text {th}}}^{\infty }\frac {\mathcal {M}}{\overline {\gamma }_{SR}}e^{-\frac {y}{\overline {\gamma }_{SR}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{SR}}}}\right]^{\mathcal {M}-1}\text {d}y}. \tag{25}\end{equation*}
\begin{equation*} \overline {P}_{e_{SR}}\left ({\mathcal {M}}\right)=\frac {\mathcal {M}\times {\sum _{k=0}^{\mathcal {M}-1}}\binom {\mathcal {M}-1}{k}\frac {(-1)^{k}e^{-\gamma _{\text {th}}\left [{\frac {\overline {\gamma }_{SR}+k+1}{\overline {\gamma }_{SR}}}\right]} }{\left ({\overline {\gamma }_{SR}+k+1}\right)}}{2\left [{1-\left ({1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{SR}}}}\right)^{\mathcal {M}}}\right]}. \tag{26}\end{equation*}
2) ABER analysis of $R_{k}$
-D
For the case of a binary phase shift keying (BPSK) signal, with the total of \begin{equation*} f_{_{PL}}\left ({t_{_{1}}\left ({\mathcal {M}}\right)}\right)\underset {-1}{\overset {1}{\gtrless }} 0. \tag{27}\end{equation*}
if$\,t_{_{1}}(\mathcal {M})< 0$ $-T_{_{1}}(\mathcal {M})< t_{_{1}}(\mathcal {M})< T_{_{1}}(\mathcal {M})$ if$\,T_{_{1}}(\mathcal {M})< 0$ $t_{_{1}}(\mathcal {M})>T_{_{1}}(\mathcal {M})$ if$\,-T_{_{1}}(\mathcal {M})< 0$ $t_{_{1}}(\mathcal {M})>-T_{_{1}}(\mathcal {M})$
As \begin{align*}&P_{e}\left ({y_{_{D}}\left ({l-1}\right)}\right) \\&= \text {Pr}\left [{t_{1}\left ({\mathcal {M}}\right)< -T_{1}\left ({\mathcal {M}}\right)|x(l)=1;y_{_{D}}(l-1)=-1}\right] \\&+ \text {Pr}\left [{-T_{1}\left ({\mathcal {M}}\right)\leq t_{1}\left ({\mathcal {M}}\right)< 0|x(l)=1;y_{_{D}}(l-1)=-1}\right]. \tag{28}\end{align*}
\begin{align*} \overline {P}_{_{e_{RD}}}\left ({\mathcal {M},\mathcal {N}}\right)=&\left ({1-\mathbf {\epsilon }_{\mathcal {_{M}}}}\right)\left [{\overline {P}_{_{e_{RD}}}^{1}\left ({\mathcal {M},\mathcal {N}}\right)+\overline {P}_{_{e_{RD}}}^{2}\left ({\mathcal {M},\mathcal {N}}\right)}\right] \\&+ \mathbf {\epsilon }_{\mathcal {_{M}}}\left [{\overline {P}_{_{e_{RD}}}^{3}\left ({\mathcal {M},\mathcal {N}}\right)+\overline {P}_{_{e_{RD}}}^{4}\left ({\mathcal {M},\mathcal {N}}\right)}\right]. \tag{29}\end{align*}
\begin{align*}&\boldsymbol {E}_{_{uv}} \\&=\begin{cases} \frac {\overline {P}_{e_{RD}}\left ({\left ({L-\mathcal {I}_{1}+1}\right),\mathcal {I}_{1}}\right)}{|\mathcal {I}_{1}|}\,\, \text {if } s_{u} \in \mathcal {I}_{1},\,\mathcal {I}_{2}=\phi,\mathcal {I}_{3}=\phi \\ \frac {\overline {P}_{e_{SR}}\left ({\mathcal {I}_{2}}\right)}{|\mathcal {I}_{2}|}\,\, \text {if } s_{u} \in \mathcal {I}_{2},\,\mathcal {I}_{1}=\phi,\mathcal {I}_{3}=\phi \\ P_{|\mathcal {I}_{3}|,\,RD}^{\mathcal {P}}\overline {P}_{e_{RD}}\left ({L,\mathcal {I}_{3}}\right)\,\, \text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1}=\phi,\mathcal {I}_{2}=\phi \\ \overline {P}_{_{\mathcal {I}_{3},\,RD}}^{\mathcal {P}} \frac {\overline {P}_{e_{SR}}\left ({\mathcal {I}_{3}}\right)}{|\mathcal {I}_{3}|}\,\, \text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1}=\phi,\mathcal {I}_{2}=\phi \\ \overline {P}_{_{\mathcal {I}_{1},\,RD}}^{F} \frac {\overline {P}_{e_{SR}}\left ({\mathcal {I}_{2}}\right)}{|\mathcal {I}_{2}|}\,\, \text {if } s_{u} \in \mathcal {I}_{2},\,\mathcal {I}_{1}\neq \phi,\mathcal {I}_{3}=\phi \\ P_{_{\mathcal {I}_{1},\,RD}}^{F} \overline {P}_{e_{RD}}\left ({L-\mathcal {I}_{1}+1,\mathcal {I}_{1}}\right)\,\, \text {if } s_{u} \in \mathcal {I}_{1},\,\exists \,\mathcal {I}_{2} \text {or } \exists \,\mathcal {I}_{3} \\ \overline {P}_{_{\mathcal {I}_{1},\,RD}}^{F} P_{_{\mathcal {I}_{2},\,SR}}^{E}\overline {P}_{e_{SR}}\left ({\mathcal {I}_{2}}\right)\,\, \text {if } s_{u} \in \mathcal {I}_{2},\,\mathcal {I}_{1}\neq \phi,\mathcal {I}_{3}\neq \phi \\ \overline {P}_{_{\mathcal {I}_{1},\,RD}}^{F} \frac {\overline {P}_{e_{RD}}\left ({\left ({L-\mathcal {I}_{1}}\right),\mathcal {I}_{3}}\right)}{|\mathcal {I}_{3}|}\,\, \text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1}\neq \phi,\mathcal {I}_{2}=\phi. \\ \overline {P}_{_{\mathcal {I}_{3},\,RD}}^{\mathcal {P}}\overline {P}_{_{\mathcal {I}_{1},\,RD}}^{F}\frac {\overline {P}_{e_{SR}}\left ({\mathcal {I}_{3}}\right)}{|\mathcal {I}_{3}|}\,\, \text {if } s_{u} \in \mathcal {I}_{3},\,\mathcal {I}_{1}\neq \phi,\mathcal {I}_{2}=\phi \\ P_{_{\mathcal {I}_{2},\,SR}}^{E} \overline {P}_{e_{SR}}\left ({\mathcal {I}_{2}}\right)\,\, \text {if } s_{u} \in \mathcal {I}_{2},\,\exists \,\mathcal {I}_{3}, \,\mathcal {I}_{1} =\phi \\ \overline {P}_{_{\mathcal {I}_{2},\,SR}}^{E}\frac { \overline {P}_{e_{RD}}\left ({L,\mathcal {I}_{3}}\right)}{|\mathcal {I}_{3}|}\,\, \text {if } s_{u} \in \mathcal {I}_{3},\,\,\mathcal {I}_{2}\neq \phi, \,\mathcal {I}_{1} =\phi \\ \overline {P}_{_{\mathcal {I}_{3},\,RD}}^{\mathcal {P}}\overline {P}_{_{\mathcal {I}_{2},\,SR}}^{E}\frac { \overline {P}_{e_{SR}}\left ({\mathcal {I}_{3}}\right)}{|\mathcal {I}_{3}|}\,\, \text {if } s_{u} \in \mathcal {I}_{3},\, \,\mathcal {I}_{2}\neq \phi, \,\mathcal {I}_{1} =\phi \\ \overline {P}_{_{\mathcal {I}_{1},\,RD}}^{F}\overline {P}_{_{\mathcal {I}_{2},\,SR}}^{E}\frac { \overline {P}_{e_{RD}}\left ({\left ({L-\mathcal {L}_{1}}\right),\mathcal {I}_{3}}\right)}{|\mathcal {I}_{3}|}\,\, \text {if } s_{u} \in \mathcal {I}_{3},\,\,\mathcal {I}_{2}\neq \phi, \,\mathcal {I}_{1} \neq \phi \\ \overline {P}_{_{\mathcal {I}_{3},\,RD}}^{\mathcal {P}}\overline {P}_{_{\mathcal {I}_{1},\,RD}}^{F}\overline {P}_{_{\mathcal {I}_{2},\,SR}}^{E}\frac { \overline {P}_{e_{SR}}\left ({\mathcal {I}_{3}}\right)}{|\mathcal {I}_{3}|}\,\, \text {if } s_{u} \in \mathcal {I}_{3},\, \,\mathcal {I}_{2}\neq \phi, \,\mathcal {I}_{1} \neq \phi \\ \end{cases} \tag{30}\end{align*}
\begin{equation*} \overline {P}_{e}=\mathbf {b}^{T}\mathbf {E}\boldsymbol {\pi },\, \tag{31}\end{equation*}
Remark 2:
For deriving the ABER expressions of the
C. Development of ${A}$
and ${E}$
matrices
In this subsection, to better comprehend the development of \begin{equation*} P_{m,\,RD}^{F}=P_{m,\,SR}^{E}=P_{m,\,RD}^{P}=P_{m,\,SR}^{P}=\chi _{m}. \tag{32}\end{equation*}
\begin{equation*} \overline {P}_{m,\,RD}^{F}=\overline {P}_{m,\,SR}^{E}=\overline {P}_{m,\,RD}^{P}=\overline {P}_{m,\,SR}^{P}=\overline {\chi }_{m}. \tag{33}\end{equation*}
\begin{align*} \mathbf {A}= \begin{bmatrix} \overline {\chi }_{_{2}} & \overline {\chi }_{_{1}} \chi _{_{1}} & 0 & \overline {\chi }_{_{1}}\chi _{_{1}} & 0 & 0 & 0 & 0 & 0 \\ \chi _{_{2}} & \overline {\chi }_{_{1}}^{3} & \chi _{_{1}} & 0 & \chi _{_{2}} & 0 & 0 & 0 & 0 \\ 0 & \overline {\chi }_{_{1}}^{2} \chi _{_{1}} & \overline {\chi }_{_{1}}^{2} & 0 & 0 & \overline {\chi }_{_{1}} \chi _{_{1}} & 0 & 0 & 0 \\ \chi _{_{2}} & 0 & 0 & \overline {\chi }_{_{1}}^{3} & \chi _{_{2}} & 0 & \chi _{_{1}} & 0 & 0 \\ 0 & \chi _{_{1}} & 0 & \chi _{_{1}} & \overline {\chi }_{_{2}}^{2} & \chi _{_{1}} & 0 & \chi _{_{1}} & 0 \\ 0 & 0 & \overline {\chi }_{_{1}}\chi _{_{1}} & 0 & \overline {\chi }_{_{2}}\chi _{_{2}} & \overline {\chi }_{_{1}}^{3} & 0 & 0 & \chi _{_{2}} \\ 0 & 0 & 0 & \overline {\chi }_{_{1}}^{2}\chi _{_{1}} & 0 & 0 & \overline {\chi }_{_{1}}^{2} & \overline {\chi }_{_{1}} \chi _{_{1}} & 0 \\ 0 & 0 & 0 & 0 & \overline {\chi }_{_{2}}\chi _{_{2}} & 0 & \overline {\chi }_{_{1}} \chi _{_{1}} & \overline {\chi }_{_{1}}^{3} & \chi _{_{2}} \\ 0 & 0 & 0 & 0 & 0 & \overline {\chi }_{_{1}}^{2} \chi _{_{1}} & 0 & \overline {\chi }_{_{1}}^{2} \chi _{_{1}} & \overline {\chi }_{_{2}} \end{bmatrix}. \tag{34}\end{align*}
\begin{align*}&\overline {P}_{e_{SR}}(m)=\Upsilon _{m} \tag{35a}\\&\overline {P}_{e_{RD}}\left ({m,n}\right)=\Upsilon _{m,n} \tag{35b}\end{align*}
\begin{align*}&\mathbf {E} \\&=\begin{bmatrix} 0 & \overline {\chi }_{_{1}} \Upsilon _{_{2,1}} & 0 & \overline {\chi }_{_{1}}\Upsilon _{_{1}} & 0 & 0 & 0 & 0 & 0 \\ \frac { \Upsilon _{_{2}}}{2} & 0 & \chi _{_{1}}\Upsilon _{_{2,}} & 0 & \chi _{_{2}}\frac {\Upsilon _{_{2,2}} }{2} & 0 & 0 & 0 & 0 \\ 0 & \overline {\chi }_{_{1}}^{2} \Upsilon _{_{1}} & 0 & 0 & 0 & \overline {\chi }_{_{1}} \Upsilon _{_{1,1}} & 0 & 0 & 0 \\ \frac {\Upsilon _{_{2}}}{2} & 0 & 0 & 0 & \Upsilon _{_{1,2}}\frac {\Upsilon _{_{2,2}} }{2} & 0 & \chi _{_{1}}\Upsilon _{_{1,1}} & 0 & 0 \\ 0 & \Upsilon _{_{1}} & 0 & \chi _{_{1}} \Upsilon _{_{1}} & 0 & \chi _{_{1}}\Upsilon _{_{2,1}} & 0 & \chi _{_{1}}\Upsilon _{_{1,1}} & 0 \\ 0 & 0 & \overline {\chi }_{_{1}}\Upsilon _{_{1}} & 0 & \overline {\chi }_{_{2}}\frac {\Upsilon _{_{2}} }{2} & 0 & 0 & 0 & \Upsilon _{_{1,2}} \\ 0 & 0 & 0 & \overline {\chi }_{_{1}}^{2}\Upsilon _{_{1}} & 0 & 0 & 0 & \overline {\chi }_{_{1}} \Upsilon _{_{1}} & 0 \\ 0 & 0 & 0 & 0 & \overline {\chi }_{_{2}}\frac {\Upsilon _{_{2}} }{2} & 0 & \overline {\chi }_{_{1}} \Upsilon _{_{1,1}} & 0 & \Upsilon _{_{1,2}} \\ 0 & 0 & 0 & 0 & 0 & \overline {\chi }_{_{1}}^{2} \chi _{_{1}} & 0 & \overline {\chi }_{_{1}}^{2} \Upsilon _{_{1}} & 0 \end{bmatrix} \tag{36}\end{align*}
D. Asymptotic ABER Analysis
The coding gain
1) $\mathcal {CG}$
calculations for $S$
-$R$
link
Using a Maclaurin series, we can approximate the expression of \begin{equation*} \overline {P}_{e_{SR}}\left ({\mathcal {M}}\right)\approx \left ({\mathcal {M}/2\overline {\gamma }_{SR}}\right)\times {\sum _{k=0}^{\mathcal {M}-1}}\binom {\mathcal {M}-1}{k}(-1)^{k}e^{-\gamma _{\text {th}}}. \tag{37}\end{equation*}
\begin{equation*} P_{e}=\left ({\mathcal {CG}/\overline {\gamma }}\right)^{\mathcal {DO}}. \tag{38}\end{equation*}
\begin{align*}&\mathcal {CG}_{_{SR}}=\left ({\mathcal {M}/2}\right)\times {\sum _{k=0}^{\mathcal {M}-1}}\binom {\mathcal {M}-1}{k}(-1)^{k}e^{-\gamma _{\text {th}}}. \qquad \tag{39a}\\&\mathcal {DO}_{_{SR}}=1. \tag{39b}\end{align*}
2) $\mathcal {CG}$
calculation of $R$
-$D$
link
For evaluating the \begin{align*} \overline {P}_{_{e_{RD}}}^{1}\left ({\mathcal {M},\mathcal {N}}\right)\approx&e^{-T_{_{1}}\left ({\mathcal {M}}\right)} \times \frac {\mathcal {N}\times {\sum _{k=0}^{\mathcal {N}-1}}\binom {\mathcal {N}-1}{k}(-1)^{k}e^{-\gamma _{\text {th}}}}{\left ({\overline {\gamma }_{RD}}\right)\left [{1-\left ({\frac {\gamma _{\text {th}}}{\overline {\gamma }_{SR}}}\right)^{\mathcal {N}}}\right]}, \\\approx&\frac {1}{T_{_{1}}\left ({\mathcal {M}}\right)}\times \frac {\mathcal {N}\times {\sum _{k=0}^{\mathcal {N}-1}}\binom {\mathcal {N}-1}{k}(-1)^{k}e^{-\gamma _{\text {th}}}}{\overline {\gamma }_{RD}}. \tag{40}\end{align*}
\begin{align*} \overline {P}_{_{e_{RD}}}^{2}\left ({\mathcal {M},\mathcal {N}}\right)\approx \left [{1-\frac {1}{T_{_{1}}\left ({\mathcal {M}}\right)}}\right]\frac {\mathcal {N}\times {\sum _{k=0}^{\mathcal {N}-1}}\binom {\mathcal {N}-1}{k}(-1)^{k}e^{-\gamma _{\text {th}}}}{\overline {\gamma }_{RD}} \tag{41}\end{align*}
\begin{equation*} \mathcal {B}_{1}\approx \frac {\mathcal {B} {\sum _{p=0}^{\mathcal {N}-1}}(-1)^{p} \binom {\mathcal {N}-1}{p}}{2\overline {\gamma }_{RD}\left [{1-\left ({1-1+\frac {\gamma _{\text {th}}}{\overline {\gamma }_{RD}}}\right)^{\mathcal {N}}}\right]}. \tag{42}\end{equation*}
\begin{equation*} \overline {P}_{_{e_{RD}}}^{3}\left ({\mathcal {M},\mathcal {N}}\right)\approx \frac {\mathcal {B} {\sum _{p=0}^{\mathcal {N}-1}}(-1)^{p} \binom {\mathcal {N}-1}{p}\Gamma \left [{k+1,\gamma _{\text {th}}}\right]}{2\overline {\gamma }_{RD}\left [{1-\left ({1-1+\frac {\gamma _{\text {th}}}{\overline {\gamma }_{RD}}}\right)^{\mathcal {N}}}\right]}. \tag{43}\end{equation*}
\begin{equation*} \mathcal {C}_{1}\approx \frac {\mathcal {C} {\sum _{p=0}^{\mathcal {N}-1}}(-1)^{p} \binom {\mathcal {N}-1}{p}}{2\overline {\gamma }_{RD}\left [{1-\left ({1-1+\frac {\gamma _{\text {th}}}{\overline {\gamma }_{RD}}}\right)^{\mathcal {N}}}\right]}. \tag{44}\end{equation*}
\begin{align*} \overline {P}_{_{e_{RD}}}^{4}\left ({\mathcal {M},\mathcal {N}}\right)\approx \frac {\mathcal {C} {\sum _{p=0}^{\mathcal {N}-1}}(-1)^{p} \binom {\mathcal {N}-1}{p}}{2\overline {\gamma }_{RD}\left [{1-\left ({1-1+\frac {\gamma _{\text {th}}}{\overline {\gamma }_{RD}}}\right)^{\mathcal {N}}}\right]} \Gamma \left [{k+1,\gamma _{\text {th}}}\right]. \tag{45}\end{align*}
\begin{equation*} \overline {P}_{_{e_{RD}}}\left ({\mathcal {M},\mathcal {N}}\right)\approx \frac {\mathcal {N}\times {\sum _{k=0}^{\mathcal {N}-1}}\binom {\mathcal {N}-1}{k}(-1)^{k}e^{-\gamma _{\text {th}}}}{\overline {\gamma }_{RD}} \tag{46}\end{equation*}
\begin{align*}&\mathcal {CG}_{RD}=\mathcal {N}\times {\sum _{k=0}^{\mathcal {N}-1}}\binom {\mathcal {N}-1}{k}(-1)^{k}e^{-\gamma _{\text {th}}}. \tag{47a}\\&\mathcal {DO}_{RD}=1. \tag{47b}\end{align*}
Remark 3:
In order to obtain the overall
Numerical Results
In this section, we presented the numerical results of the considered BA DDM-based setup; the obtained results are further verified using Monte-Carlo simulations of
Fig. 3 depicts the plots for ABER versus the total available power of the considered setup; channels are assumed to be symmetric
Remark 4:
The usage of the relay buffer and the proposed priority-based max-link link selection technique are primarily responsible for the enhancement in the ABER performance, which results in the narrowing of the SNR gap between coherent and DDM-based systems from 6 dB to 2-2.5 dB.
Plots for ABER versus total available power are shown in Fig. 4; for the plots demonstrated, we have assumed that the system encounters a CFO, which is uniformly distributed over
The graphs for outage probability versus total available power for symmetric channels, i.e.,
Fig. 6 shows the system’s ABER performance with respect to the power allocation factor
Fig. 7 displays the ABER versus relay location plots for different
Conclusion and Future Works
A novel system employing multiple relays for a DDM-based BA relaying system has been proposed. A new protocol for transmitting symbols from relay nodes is given that utilizes different time intervals for the reception and transmission of data symbols. Also, a priority-based link selection protocol has been proposed, To make it suitable for DDM-based relaying, we have used indexing of the bits, which helps in decoding and encoding by keeping track of the last two bits. The outage probability for the considered DDM-based setup is obtained by using the MC model. Also, by using the PL detector and MC model, the ABER of the considered setup was evaluated. The ABER for
Next, we compared the performance of the proposed DDM-based setup with its coherent counterpart. Based on the numerical findings, we can deduce that the considered DDM setup encountered an SNR penalty of roughly 2.5 dB at the BER range of
The above-developed system can be used to communicate a signal in a remote location where the channel quality is not good enough, and the estimation of CSI and CFO is difficult. Also, it can be used in hybrid links where one link has a high data rate, so a relay node will store the data packet and transmit it to a link with a lower data rate later. Furthermore, in future work, with the help of obtained ABER and outage probability expression, the optimal buffer size can be obtained for the proposed BA DDM-based relaying system. An analysis of the average packet delay can also be done with the trade-off between system performance and average packet delay can be obtained.
AppendixDerivation of $\overline{P}_{_{{e}_{RD}}}^{1}{(}\mathcal{M},\mathcal{N}{)}$
, $\overline{P}_{_{{e}_{RD}}}^{2}{(}\mathcal{M},\mathcal{N}{)}$
, $\overline{P}_{_{{e}_{RD}}}^{3 }{(}\mathcal{M},\mathcal{N}{)}$
, and $\overline{P}_{_{{e}_{RD}}}^{4}{(}\mathcal{M},\mathcal{N}{)}$
Derivation of $\overline{P}_{_{{e}_{RD}}}^{1}{(}\mathcal{M},\mathcal{N}{)}$
, $\overline{P}_{_{{e}_{RD}}}^{2}{(}\mathcal{M},\mathcal{N}{)}$
, $\overline{P}_{_{{e}_{RD}}}^{3 }{(}\mathcal{M},\mathcal{N}{)}$
, and $\overline{P}_{_{{e}_{RD}}}^{4}{(}\mathcal{M},\mathcal{N}{)}$
In (32) the term \begin{equation*} \overline {P}_{_{e_{RD}}}^{1}\left ({\mathcal {M},\mathcal {N}}\right)=\frac {\int _{\gamma _{\text {th}}}^{\infty } P_{_{e_{RD}}}^{1}\left ({\mathcal {M},\mathcal {N}}\right)(y)f_{\Gamma _{RD}}(y) \text {d}y}{\int _{\gamma _{\text {th}}}^{\infty } f_{_{\Gamma _{RD}}}(y)\text {d}y}. \tag{48}\end{equation*}
\begin{align*} P_{_{e_{RD}}}^{1}\left ({m,n}\right)=&\text {Pr}\left [{t_{_{1}}(m)< -T_{_{1}}(m)|x(l)=1;x_{R}(l)=1}\right] \\=&\int _{-\infty }^{-T_{1}\left ({\mathcal {M}}\right)}f_{t_{1}}\left [{w|y_{D}(l-1),x_{R}(l)}\right]dw. \tag{49}\end{align*}
\begin{equation*} P_{_{e_{RD}}}^{1}\left ({\mathcal {M},\mathcal {N}}\right)=\frac {e^{-y/2}\times e^{-3T_{_{1}}\left ({\mathcal {M}}\right)/2}}{2}. \tag{50}\end{equation*}
\begin{align*}&\overline {P}_{_{e_{RD}}}^{1}\left ({\mathcal {M},\mathcal {N}}\right) \\&=\frac {\int _{\gamma _{\text {th}}}^{\infty }e^{-y/2}e^{-3T_{_{1}}\left ({\mathcal {M}}\right)/2}\frac {\mathcal {N}}{\overline {\gamma }_{RD}}e^{-\frac {y}{\overline {\gamma }_{RD}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{RD}}}}\right]^{\mathcal {N}-1}}{2\int _{\gamma _{\text {th}}}^{\infty }\frac {\mathcal {N}}{\overline {\gamma }_{RD}}e^{-\frac {y}{\overline {\gamma }_{RD}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{RD}}}}\right]^{\mathcal {N}-1}}.\qquad \tag{51}\end{align*}
\begin{align*}&\overline {P}_{_{e_{RD}}}^{1}\left ({\mathcal {M},\mathcal {N}}\right) \\&=\frac {\mathcal {N}e^{-3T_{_{1}}\left ({\mathcal {M}}\right)/2} {\sum _{p=0}^{\mathcal {N}-1}}\binom {\mathcal {N}-1}{p}\frac {(-1)^{p}e^{-\overline {\gamma }_{\text {th}}\left [{\frac {\overline {\gamma }_{RD}+2p+2}{\overline {\gamma }_{RD}}}\right]}}{\left ({\overline {\gamma }_{RD}+2p+2}\right)} }{\left [{1-\left ({1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{RD}}}}\right)^{\mathcal {N}}}\right]}.\,\, \tag{52}\end{align*}
\begin{equation*} \overline {P}_{_{e_{RD}}}^{2}\left ({\mathcal {M},\mathcal {N}}\right)=\frac {\int _{\gamma _{\text {th}}}^{\infty } P_{_{e_{RD}}}^{2}\left ({\mathcal {M},\mathcal {N}}\right)(y)f_{\Gamma _{RD}}(y) \text {d}y}{\int _{\gamma _{\text {th}}}^{\infty } f_{_{\Gamma _{RD}}}(y)\text {d}y}. \tag{53}\end{equation*}
\begin{align*} P_{_{e_{RD}}}^{2}\left ({\mathcal {M},\mathcal {N}}\right)=&\text {Pr}\left ({t_{_{1}}\left ({\mathcal {M}}\right)< T_{_{1}}\left ({\mathcal {M}}\right)}\right)|\left.{d(l)=1;\tilde {d}(l)=-1}\right) \\=&\int _{-T_{_{1}}\left ({\mathcal {M}}\right)}^{0} f_{t_{_{1}}\left ({\mathcal {M}}\right)}\left [{w|y_{D}(l-1),x_{R}(l)}\right]dw \\=&\frac {1}{2}e^{-y/2}\left [{1- e^{-\frac {3T_{_{1}}\left ({\mathcal {M}}\right)}{2}}}\right]. \tag{54}\end{align*}
Substituting the expressions of \begin{align*}&\overline {P}_{_{e_{RD}}}^{2}\left ({\mathcal {M},\mathcal {N}}\right) \\&=\frac {\int _{\gamma _{\text {th}}}^{\infty }e^{-y/2}\left [{1- e^{-\frac {3T_{_{1}}\left ({\mathcal {M}}\right)}{2}}}\right]\frac {\mathcal {N}}{\overline {\gamma }_{RD}}e^{-\frac {y}{\overline {\gamma }_{RD}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{RD}}}}\right]^{\mathcal {N}-1}\text {d}y}{2\int _{\gamma _{\text {th}}}^{\infty }\frac {\mathcal {N}}{\overline {\gamma }_{RD}}e^{-\frac {y}{\overline {\gamma }_{RD}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{RD}}}}\right]^{\mathcal {N}-1}\text {d}y}. \tag{55}\end{align*}
\begin{align*}&\overline {P}_{_{e_{RD}}}^{2}\left ({\mathcal {M},\mathcal {N}}\right) \\&=\frac {\mathcal {N}\left ({1-e^{-3T_{_{1}}\left ({\mathcal {M}}\right)/2}}\right) {\sum _{p=0}^{\mathcal {N}-1}}\binom {\mathcal {N}-1}{p}\frac {(-1)^{p}e^{-\gamma _{\text {th}}\left [{\frac {\overline {\gamma }_{RD}+2p+2}{\overline {\gamma }_{RD}}}\right]}}{\left ({\overline {\gamma }_{RD}+2p+2}\right)} }{\left [{1-\left ({1-e^{-\frac {\gamma _{\text {th}}}{\overline {\gamma }_{RD}}}}\right)^{\mathcal {N}}}\right]}. \tag{56}\end{align*}
\begin{equation*} \overline {P}_{_{e_{RD}}}^{3}\left ({\mathcal {M},\mathcal {N}}\right)=\frac {\int _{\gamma _{\text {th}}}^{\infty } P_{_{e_{RD}}}^{3}\left ({\mathcal {M},\mathcal {N}}\right)(y)f_{\Gamma _{RD}}(y) \text {d}y}{\int _{\gamma _{\text {th}}}^{\infty } f_{_{\Gamma _{RD}}}(y)\text {d}y}. \tag{57}\end{equation*}
\begin{align*} P^{(3) }_{e_{RD}}\left ({\mathcal {M},\mathcal {N}}\right)=&\text {Pr}\,\left [{t_{_{1}}\left ({\mathcal {M}}\right)< -T_{_{1}}\left ({\mathcal {M}}\right)|x(l)=1;x_{R}(l)=-1}\right]\, \\=&\int _{-\infty }^{-T_{_{1}}\left ({\mathcal {M}}\right)} f_{t_{_{1}}}\left ({\mathcal {M}\left [{w|y_{D}(l-1),x_{R}(l)}\right]dw. }\right. \tag{58}\end{align*}
\begin{equation*} P^{(3) }_{e_{RD}}\left ({\mathcal {M},\mathcal {N}}\right)=\left ({1/2}\right)e^{-y} \mathcal {B}y^{k} \, \tag{59}\end{equation*}
\begin{align*} \overline {P}_{_{e_{RD}}}^{3}\left ({\mathcal {M},\mathcal {N}}\right)=\frac {\int _{\gamma _{\text {th}}}^{\infty } e^{-y} \mathcal {B}y^{k}\frac {\mathcal {N}}{\overline {\gamma }_{RD}}e^{-\frac {y}{\overline {\gamma }_{RD}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{RD}}}}\right]^{\mathcal {N}-1}\text {d}y}{2\int _{\gamma _{\text {th}}}^{\infty }\frac {\mathcal {N}}{\overline {\gamma }_{RD}}e^{-\frac {y}{\overline {\gamma }_{RD}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{RD}}}}\right]^{\mathcal {N}-1}\text {d}y}. \tag{60}\end{align*}
\begin{equation*} \overline {P}_{_{e_{RD}}}^{3}\left ({\mathcal {M},\mathcal {N}}\right)=\mathcal {B}_{1} \Gamma \left [{k+1,\gamma _{\text {th}}\left [{\frac {\overline {\gamma }_{RD}+p+1}{\overline {\gamma }_{RD}}}\right]}\right], \tag{61}\end{equation*}
The expression of \begin{equation*} \overline {P}_{_{e_{RD}}}^{4}\left ({\mathcal {M},\mathcal {N}}\right)=\frac {\int _{\gamma _{\text {th}}}^{\infty } P_{_{e_{RD}}}^{4}\left ({\mathcal {M},\mathcal {N}}\right)(y)f_{\Gamma _{RD}}(y) \text {d}y}{\int _{\gamma _{\text {th}}}^{\infty } f_{_{\Gamma _{RD}}}(y)\text {d}y}. \tag{62}\end{equation*}
\begin{align*} P^{(4) }_{e_{RD}}\left ({\mathcal {M},\mathcal {N}}\right)=&\text {Pr}\,\left [{t_{_{1}}\left ({\mathcal {M}}\right)< 0|-T_{_{1}}\left ({\mathcal {M}}\right)\leq t_{_{1}}\left ({\mathcal {M}}\right)}\right. \\&\qquad \left.{\leq T_{_{1}}\left ({\mathcal {M}}\right);x(l)=1;x_{R}=-1}\right]\, \\=&\int _{-T_{_{1}}\left ({\mathcal {M}}\right)}^{0} f_{t_{_{1}}\left ({\mathcal {M},\mathcal {N}}\right)}\left [{w|y_{D}(l-1),x_{R}(l)}\right]dw. \tag{63}\end{align*}
\begin{equation*} P^{(4) }_{e_{RD}}\left ({\mathcal {M},\mathcal {N}}\right)=\left ({1/2}\right)e^{-y}\times \,\mathcal {C} y^{k}/k!, \tag{64}\end{equation*}
\begin{align*}&\overline {P}_{_{e_{RD}}}^{4}\left ({\mathcal {M},\mathcal {N}}\right) \\&=\frac {\int _{\gamma _{\text {th}}}^{\infty } e^{-y}\times \,\mathcal {C} \frac {y^{k}}{k!}\frac {\mathcal {N}}{\overline {\gamma }_{RD}}e^{-\frac {y}{\overline {\gamma }_{RD}}}\left [{1-e^{-\frac {y}{\gamma _{RD}}}}\right]^{\mathcal {N}-1}}{2\int _{\gamma _{\text {th}}}^{\infty }\frac {\mathcal {N}}{\overline {\gamma }_{RD}}e^{-\frac {y}{\overline {\gamma }_{RD}}}\left [{1-e^{-\frac {y}{\overline {\gamma }_{RD}}}}\right]^{\mathcal {N}-1}}. \tag{65}\end{align*}
\begin{equation*} \overline {P}_{_{e_{RD}}}^{4}\left ({\mathcal {M},\mathcal {N}}\right)=\mathcal {C}_{1} \Gamma \left [{k+1,\gamma _{\text {th}}\left [{\frac {\overline {\gamma }_{RD}+p+1}{\overline {\gamma }_{RD}}}\right]}\right], \tag{66}\end{equation*}