Nowadays and soon, electrical devices are growing fast, as reported by Ericsson [1]. This report states that there will be around 36,048 connected devices in wireless communication by the year 2025, which will form the Internet-of-Thing (IoT) systems. Additionally, more interconnected devices operate intelligently, and the electric industry will become a hot trend and continue beyond 2030. Thus, wireless communication systems require much more resources and higher criteria such as latency lower than 0.1 ms, reliability higher than 99.99999%, and sensing accuracy at the millimeter-level. Besides, energy efficiency is a major problem in the fifth-generation (5G) and sixth-generation (6G) networks. To deal with these requirements, several solutions are suggested: 1) using the non-orthogonal multiple access (NOMA) to improve the spectrum efficiency in 5G and 6G systems [2], [3], 2) utilizing short packets to achieve ultra-reliable low latency communications (URLLC), which is helpful in the IoT systems, 3) employing unmanned aerial vehicles (UAVs) to provide dynamic mobility for the communication devices in disaster and emergency response, 4) applying energy harvesting to overcome the limited battery capacity of electric devices and UAV [4]. On the other hand, in the command-control and monitor systems for toxic areas, the usage of UAVs to communicate becomes the trend because it does not require fixed infrastructure [5], [6], [7], [8].
A. Related Work
Recent investigations into UAV-assisted short-packet communications combined with energy harvesting have attracted much attention from researchers. In particular, Ranjha et al. [4] formulated a non-convex joint resource allocation, trajectory design, and energy harvesting problem to minimize the total decoding error rate in URLLC-enable laser-powered UAV relay systems. Raut et al. [9] investigated a nonlinear energy harvesting (EH)-based UAV-assisted FD relay network with infinite and finite blocklength codes, where source UAV harvested energy transmitted from a laser transmitter. The closed-form expression of block error rate (BLER) was derived under the impacts of imperfect channel state information (CSI). Agrawal et al. [10] analyzed the average outage probability, BLER, and goodput of reconfigurable intelligent surface (RIS)-assisted UAV-based multiuser communication system with finite blocklength codes and nonlinear EH of the ground user. Moreover, the investigation harvested energy for the UAV-assisted infinite blocklength communications have been studied in many works such as [11], [12], [13], [14], and [15]. These works stated that the harvested energy was enough for signal transmission.
On the other hand, UAV-assisted short-packet communication (SPC) systems without energy harvesting have also been considered in the literature. Particularly, Hu et al. [16] studied the influence of SPC on the performance of UAV-enable cognitive networks. The authors formulated the optimization problem for maximizing the energy efficiency under the constraints of packet error rate, spectrum sensing duration and threshold, and the transmit power of the UAV. Basnayaka et al. [17] studied the age of information of an URLLC-enable UAV wireless network by deriving the closed-form expression of this performance metric. Yuan et al. [18] derived the closed-form expression of BLER and applied both bisection search and one-dimensional search algorithm to maximize the energy efficiency of the UAV in a UAV-assisted URLLC between a base station and a user. The usage of short packets for remote control of the UAV was considered in [19], [20], and [22]. The authors derived closed-form expressions of the average packet error probability (APEP) and throughput of these systems. Ranjha et al. [21] performed passive beamforming of RIS antenna elements and nonlinear nonconvex optimization to minimize the overall decoding error rate and find the optimal UAV’s position and blocklength. From Table 1, we see that most of the above UAV-assisted SPC systems utilized orthogonal multiple access (OMA) schemes and did not use the energy harvesting technique. Only several works applied simultaneous wireless information and power transfer (SWIPT) to the UAV. However, SWIPT may not be an efficient EH technique for UAV-assisted communication systems.
Presently, incorporating the NOMA technique into SPC helps to improve the spectral efficiency of finite blocklength transmissions. Specifically, Yao et al. [23] proposed a join decoding for downlink NOMA systems with finite blocklength transmissions. Le et al. [24] studied an uplink NOMA wireless system with SPC under channel estimation errors and residual transceiver hardware impairments. The authors provided the average BLER in the finite blocklength regime, then formulated a maximum throughput optimization problem subject to the packet length. Comparisons between NOMA-SPC and OMA-SPC were also presented. Tran et al. [25] investigated a multi-user downlink MIMO-NOMA system with SPC. For evaluating the system performance, the authors derived the asymptotic and approximate closed-form expressions of the average BLER. Vu et al. [26] studied the performance of IRS-aided short-packet NOMA systems under perfect and imperfect SIC by deriving the closed-form approximated expressions of BLER with random and optimal phase shifts. Yin et al. [27] proposed a packet re-management framework for a cooperative NOMA scheme for SPC and gave a linear searching method to solve the problem of minimizing power consumption. It is worth noticing that the NOMA-SPC systems in [23], [24], [25], [26], and [27] did not consider the usage of UAVs despite of the advantages of using UAV such as high mobility and versatility. Additionally, energy charging for the UAV using a power beacon was also not considered in the above works. The main reason for these matters is the extreme difficulty in obtaining the closed-form mathematical expressions of the BLER and throughput of the EH-enable UAV-assisted NOMA-SPC system over Rician channels. Furthermore, since the UAV’s propulsion energy is much higher than the UAV’s communication energy in practice, the issue of compatibility between them occurs. On the other hand, utilizing the propulsion energy of a UAV for communication might introduce fluctuations in the signals. Moreover, using the energy of a UAV for information transmission would further drain the battery, reducing its operational time. To overcome these limitations, we mathematically study a UAV-assisted NOMA relay system where a UAV harvests energy from a power beacon to support short-packet transmissions over Rician channels. The main contributions of this paper are summarized as follows:
Unlike previous works which studied UAV-SPC systems without NOMA [4], [9], [10], [16], [17], [18], [19], [20], [21] or NOMA-SPC systems without UAV and EH [23], [24], [25], [26], [27], we fill these research gaps by investigating a UAV-assisted NOMA relay system, where an EH-enable UAV employs NOMA technique to forward finite blocklength packets from a source to two destinations (now called the UAV-NOMA-SPC system).
We first derive the signal-to-interference-plus-noise ratio (SINR) expressions corresponding to the light-of-sight (LoS) and NLoS communications. Based on these SINR expressions, we provide the closed-form expressions of the performance in terms of the BLER and throughput of the considered UAV-assisted NOMA relay system with finite packet size. For practical UAV-assisted communications, we investigate the system performance over Rician fading channel and different urban environments.
We extensively study the effects of energy harvesting duration, environments, the number of training bits, the 3D trajectory of the UAV, the Rician factor, and blocklength on the BLERs and throughput of the considered UAV-NOMA-SPC system. We show that the best system performance can be obtained by determining the appropriate energy harvesting duration, UAV coordinate, the number of training bits, and power allocation coefficient. The comparisons between the BLERs of the UAV-NOMA-SPC and UAV-OMA-SPC systems are also provided to show the advantage of the considered system.
The remainder of this paper is structured as follows. Section II describes the system model. Section III presents the mathematical analysis of the BLER and the throughput. The main results and relevant discussions are given in detail in Section IV. Finally, Section V concludes the paper.
Notation: a represents a vector while \|\textbf {a}\|
is the Euclidean norm of a. [\cdots]^{T}
denotes the transpose of [\cdots]
. f_{X}(x)
and F_{X}(x)
refer to the probability density function (PDF) and the cumulative distribution function (CDF) of a random variable X
, respectively; \|\cdot \|^{2}
means the Frobenius norm; the expectation operator is \mathbb {E}[\cdot]
.
Fig. 1 illustrates the wireless-powered UAV-NOMA-SPC system considered in this paper. It consists of four nodes: a source node (S) as a controlling station, two destinations (\rm D_{1}
and \rm D_{2}
), a UAV as an air relay (AR), and a power beacon (PB). It is assumed that the direct links between S and Di are unavailable due to mountains or high-rise buildings. Thus, the communication between S and Di is assisted by the UAV operating as a decode-and-forward (DF) relay. Moreover, the power for S and Di come from a fixed power source, while the operating energy of the UAV is harvested from the PB [4]. Without loss of generality, we assume that S, PB, and Di are located on a horizontal plane and the UAV hovers above them. Specifically, the locations of all nodes are \textbf {w}_{\mathrm{ s}}={\mathrm{ S}}(x_{\mathrm{ s}}, y_{\mathrm{ s}}, 0)
, \textbf {w}_{\mathrm{ p}}={\mathrm{ PB}}(x_{\mathrm{ p}}, y_{\mathrm{ p}}, 0)
, \textbf {w}_{1}={\rm D_{1}}(x_{w_{1}}, y_{w_{1}}, 0)
, \textbf {w}_{2}={\rm D_{2}}(x_{w_{2}}, y_{w_{2}}, 0)
, and UAV (x_{u},y_{u}, H)
. In this paper, the flying time of the UAV from the initial point \textbf {q}_{I}=(x_{I}, y_{I}, H)
to the final point \textbf {q}_{F}=(x_{F}, y_{F}, H)
is T
, and it is divided into N
sub-timeslots, i.e., each incremental time of UAV is \delta _{t}=\frac {T}{N}
. The location of the UAV at the n
th time slot is expressed as UAV \textbf {q}[n]=(x_{u}[n],y_{u}[n], H)
, n\in \{1, \cdots, N\}
. The distance between PB and UAV at the n
th time slot isd_{p}=\sqrt {\|\textbf {q}[n]-\textbf {w}_{\mathrm{ p}}\|^{2}+v \delta _{t}+H^{2}}
while the distance between UAV and Di is d_{i}=\sqrt {\|\textbf {q}[n]-\textbf {w}_{i}\|^{2}+v \delta _{t}+H^{2}}
. The sub-timeslot is formulated as \delta _{t}=\frac {\textbf {q}[n+1]-\textbf {q}[n]}{v}
, where v
is the velocity of UAV. When n=1
, the UAV stays right above S; when n=N
, the UAV stays right above Di. The incremental distance during each sub-timeslot \delta _{t}
must satisfy \|\textbf {q}[n+1]-\textbf {q}[n]\|^{2}\le v \delta _{t}
so that the location of UAV is almost unchanged during each sub-timeslot.
A. Channel Model
The wireless channels are modeled by two kinds of fading, i.e., large-scale fading and small-scale fading. The large-scale fading depends on the distance between transmitter and receiver and the path loss of the propagation environment. The amplitude of small-scale fading is fixed in one symbol duration but may be changed randomly over the next symbol. We denote the large-scale fading between S and the UAV as {\mathcal{ L}}_{s}[n]=\frac {\beta _{0}}{(\|\textbf {q}[n]-\textbf {w}_{\mathrm{ s}}\|^{2}+H^{2})^{\alpha }}
, and from the UAV to Di as {\mathcal{ L}}_{d}[n]=\frac {\beta _{0}}{(\|\textbf {q}[n]-\textbf {w}_{i}\|^{2}+H^{2})^{\alpha }}
, and the distance between the PB and the UAV as {\mathcal{ L}}_{p}[n]=\frac {\beta _{0}}{(\|\textbf {q}[n]-\textbf {w}_{\mathrm{ p}}\|^{2}+H^{2})^{\alpha }}
, where \beta _{0}
refers to the channel gain at the reference distance d_{0}=1
m [28] and \alpha (\theta _{\ell})=\left[{\alpha \left({\frac {\pi }{2}}\right)-\alpha (0)}\right]\eta +\alpha (0)
, \ell \in \{\rm {S},\rm {PB},\rm {D}_{i} \}
represents the path-loss coefficient from the UAV to ground users, 0\le \eta \le 1
is an additional attenuation factor to show the relationship between the LoS probability and the elevation angle of the UAV and ground terminals. The probabilities of LoS and NLoS links are, respectively, characterized as [29] \begin{align*} P_{\mathrm{ LoS}}(\theta _{\ell})&= c_{1}-\frac {c_{1}-c_{2}}{1+\left({\frac {\theta _{\ell} -c_{3}}{c_{4}}}\right)^{c_{5}}}, \tag{1}\\ P_{\mathrm{ NLoS}}(\theta _{\ell})&=1- P_{\mathrm{ LoS}}(\theta _{\ell}), \tag{2}\end{align*}
View Source
\begin{align*} P_{\mathrm{ LoS}}(\theta _{\ell})&= c_{1}-\frac {c_{1}-c_{2}}{1+\left({\frac {\theta _{\ell} -c_{3}}{c_{4}}}\right)^{c_{5}}}, \tag{1}\\ P_{\mathrm{ NLoS}}(\theta _{\ell})&=1- P_{\mathrm{ LoS}}(\theta _{\ell}), \tag{2}\end{align*}
where \theta _{\ell} =\frac {180^{o}}{\pi }{\mathrm{ arcsin}}\left({\frac {H}{d_{\ell} }}\right)
; c_{k}
with k\in \{1, \cdots, 5\}
are constants, which depend on the types of urban environments. Their empirical values are presented in Table 2.
Obviously, the altitude of the UAV influences the quality of signal propagation from ground users to the UAV, i.e., the LoS probability between ground users and the UAV depends on \theta _{\ell}
. In particular, larger \theta _{\ell}
(which also means higher altitude of the UAV) leads to higher LoS probability; however, the path losses of wireless links also increase.
Due to the effects of LoS connections and multi-path scattering at ground users, the fluctuation of small-scale fading can be modeled by Rician distribution [31]. Let us denote h_{s}
, h_{p}
, h_{d_{i}}
as the small-scale fading coefficients between S and UAV, PB and UAV, UAV and Di, respectively. These are modeled as \begin{equation*} h_{\ell} = \sqrt { \frac {K_{\ell} }{K_{\ell} +1}}\sigma _{\ell} e^{j\phi } + \sqrt {\frac {1}{K_{\ell} +1}}{\mathcal{ CN}}(0, \sigma _{\ell} ^{2}), \tag{3}\end{equation*}
View Source
\begin{equation*} h_{\ell} = \sqrt { \frac {K_{\ell} }{K_{\ell} +1}}\sigma _{\ell} e^{j\phi } + \sqrt {\frac {1}{K_{\ell} +1}}{\mathcal{ CN}}(0, \sigma _{\ell} ^{2}), \tag{3}\end{equation*}
where the first term represents the specular path arriving with uniform phase \phi
and the second term refers to the aggregation of large numbers of reflected and scattered paths, which is independent of \phi
; K_{\ell} = \frac {P_{\mathrm{ LoS}}(\theta _{\ell})}{1-P_{\mathrm{ LoS}}(\theta _{\ell})}
is the Rician factor defined as the ratio of the power in the LoS component to the power in the multipath scatters [17], and {\mathcal{ CN}}(0, \sigma _{\ell} ^{2})
is the random scattering component, which is a circularly symmetric complex Gaussian (CSCG) random variable with zero mean and unit variance. Note that K_{\ell}
only represents the possibility of having LoS communications in small-scale fading but does not include the path loss in large-scale fading. The probability distribution function (PDF) of h_{\ell}
is \begin{align*} f_{|h_{\ell} |^{2}}(x) &= \frac {(K_{\ell} +1) e^{-K_{\ell} }}{\lambda _{\ell} }\exp \left({-\frac {(K_{\ell} +1)x}{\lambda _{\ell} }}\right) \\ &\quad \times I_{0}\left({2 \sqrt {\frac {K_{\ell} (K_{\ell} +1)x}{\lambda _{\ell} }}}\right), x\ge 0, \tag{4}\end{align*}
View Source
\begin{align*} f_{|h_{\ell} |^{2}}(x) &= \frac {(K_{\ell} +1) e^{-K_{\ell} }}{\lambda _{\ell} }\exp \left({-\frac {(K_{\ell} +1)x}{\lambda _{\ell} }}\right) \\ &\quad \times I_{0}\left({2 \sqrt {\frac {K_{\ell} (K_{\ell} +1)x}{\lambda _{\ell} }}}\right), x\ge 0, \tag{4}\end{align*}
where I_{0}(\cdot)
denotes the zero-order modified Bessel function of the first kind, \lambda _{\ell} = \mathbb {E}{|h_{\ell} |^{2}}
is the average channel gain of small-scale fading. Without loss of generality, the average channel gain of the system under the effects of both large-scale and small-scale fading can be presented as \hat \Omega _{\ell} =\omega \lambda _{\ell} |{\mathcal{ L}}_{\ell} [n]|
, where \omega
is an additional attenuation factor caused by the LoS or NLoS communications in large-scale fading. Notably, \omega =1
for LoS communication and 0 < \omega < 1
for NLoS communication [32]. This means that the average channel gains corresponding to LoS and NLoS communications between ground terminals and the UAV are given by [33] \begin{align*} {\Omega _{\ell} }= \begin{cases} \displaystyle (1-\rho)\hat \Omega _{\ell} & \text {LoS link},\\ \displaystyle \omega (1-\rho)\hat \Omega _{\ell} & \text {NLoS link}, \end{cases} \tag{5}\end{align*}
View Source
\begin{align*} {\Omega _{\ell} }= \begin{cases} \displaystyle (1-\rho)\hat \Omega _{\ell} & \text {LoS link},\\ \displaystyle \omega (1-\rho)\hat \Omega _{\ell} & \text {NLoS link}, \end{cases} \tag{5}\end{align*}
where 0 < \rho \le 1
reflects the impact of moving speed of the UAV [9], [34], [35]. In the case of uniform scattering, \rho
can be calculated as \rho = J_{0}\left({\frac {2\pi f_{c} v}{r_{s} c}}\right)
, where f_{c}
is the carrier frequency, c
is the speed of light, r_{s}
is the symbol rate, and J_{0}(\cdot)
is the for zeroth order Bessel function of the first kind. We can see that \rho
affects the average channel gain, i.e., a larger \rho
means the velocity v
of the UAV is higher, leading to a smaller average channel gain. It is also assumed that the Doppler effect caused by the UAV mobility is perfectly compensated at the receivers [36], and the coherence time of a signal over a channel use is perfect.
Therefore, under the effects of both large-scale and small-scale fading, the channel between PB and UAV is h_{\mathrm{ pu}}={\mathcal{ L}}_{p}[n]h_{p}
, between S and UAV is h_{\mathrm{ su}}={\mathcal{ L}}_{s}[n]h_{s}
and from UAV to Di is h_{\rm ud_{i}}={\mathcal{ L}}_{d}[n]h_{\rm d_{i}}
.
B. Energy Harvesting and Communication Model
Regarding the energy harvesting process, the interval \kappa
of each transmit symbol period is used to harvest energy from PB. During this duration, the UAV harvests energy transmitted from PB by using time switching (TS) protocol. Thus, the harvested energy at the UAV in m
channel use (cu) is [14], [37], and [38] \begin{equation*} E_{A}=\kappa m P_{\mathrm{ b}}|h_{\mathrm{ pu}}|^{2}\xi, \tag{6}\end{equation*}
View Source
\begin{equation*} E_{A}=\kappa m P_{\mathrm{ b}}|h_{\mathrm{ pu}}|^{2}\xi, \tag{6}\end{equation*}
where P_{\mathrm{ b}}
is the transmit power of PB and \xi
denotes the energy conversion efficiency at the UAV. Since the UAV operates in half-duplex (HD) mode, the transmit power of the UAV is \begin{equation*} P_{\mathrm{ r}}=\frac {2\kappa m\xi P_{\mathrm{ b}}|h_{\mathrm{ pu}}|^{2}}{1-\kappa }=\Delta |h_{\mathrm{ pu}}|^{2},\,\, with \,\, \Delta = \frac {2\kappa m \xi P_{\mathrm{ b}}}{1-\kappa }. \tag{7}\end{equation*}
View Source
\begin{equation*} P_{\mathrm{ r}}=\frac {2\kappa m\xi P_{\mathrm{ b}}|h_{\mathrm{ pu}}|^{2}}{1-\kappa }=\Delta |h_{\mathrm{ pu}}|^{2},\,\, with \,\, \Delta = \frac {2\kappa m \xi P_{\mathrm{ b}}}{1-\kappa }. \tag{7}\end{equation*}
During the remaining symbol period, S transmits control signals to Di in HD mode, i.e., S sends data blocks with the sizes of m(1-\kappa)/2
symbol to the UAV in the first phase; then the UAV forwards the control signals to D1 and D2 over remaining m(1-\kappa)/2
symbol. For the transmission of control signals, the number of codewords needs to be small to satisfy low latency. Thus, the length of the transmitted packet is finite. This setting is suitable for the communications and controls of coastal ships using finite blocklength codes.
For the power-domain NOMA technique, in the first phase, S superposes x_{1}
and x_{2}
according to the power allocation coefficients a_{1}
and a_{2}
, respectively, i.e, x_{\mathrm{ S}}=\sqrt {a_{1}P_{\mathrm{ s}}}x_{1}+\sqrt {a_{2}P_{\mathrm{ s}}}x_{2}
, a_{1}\le a_{2}
and a_{1}+a_{2}=1
, where P_{\mathrm{ s}}
is the transmit power of S. Consequently, the received signal at the UAV is \begin{equation*} y_{\mathrm{ U}} = h_{\mathrm{ su}}(\sqrt {a_{1} P_{\mathrm{ s}}}x_{1} + \sqrt {a_{2} P_{\mathrm{ s}}} x_{2}) + w_{u}, \tag{8}\end{equation*}
View Source
\begin{equation*} y_{\mathrm{ U}} = h_{\mathrm{ su}}(\sqrt {a_{1} P_{\mathrm{ s}}}x_{1} + \sqrt {a_{2} P_{\mathrm{ s}}} x_{2}) + w_{u}, \tag{8}\end{equation*}
where w_{u}={\mathcal{ CN}}(0,\sigma _{\mathrm{ U}}^{2})
is the additive white Gaussian noise (AWGN) with zero mean and standard variance of \sigma _{\mathrm{ U}}^{2}
at the UAV. The signal x_{2}
is first decoded at the UAV and treated x_{1}
as noise, then the UAV decodes x_{1}
by applying SIC technique to subtract x_{2}
. Thus, the signal-to-interference plus noise ratios (SINRs) of x_{1}
and x_{2}
in the case of perfect SIC are, respectively, expressed as \begin{align*} \gamma _{\mathrm{ AR}}^{x_{2}} &=\frac {a_{2} P_{\mathrm{ s}}|h_{\mathrm{ su}}|^{2}}{a_{1} P_{\mathrm{ s}}|h_{\mathrm{ su}}|^{2}+\sigma _{\mathrm{ AR}}^{2}}, \tag{9}\\ \gamma _{\mathrm{ AR}}^{x_{1}} &=\frac {a_{1} P_{\mathrm{ s}}|h_{\mathrm{ su}}|^{2}}{\sigma _{\mathrm{ AR}}^{2}}. \tag{10}\end{align*}
View Source
\begin{align*} \gamma _{\mathrm{ AR}}^{x_{2}} &=\frac {a_{2} P_{\mathrm{ s}}|h_{\mathrm{ su}}|^{2}}{a_{1} P_{\mathrm{ s}}|h_{\mathrm{ su}}|^{2}+\sigma _{\mathrm{ AR}}^{2}}, \tag{9}\\ \gamma _{\mathrm{ AR}}^{x_{1}} &=\frac {a_{1} P_{\mathrm{ s}}|h_{\mathrm{ su}}|^{2}}{\sigma _{\mathrm{ AR}}^{2}}. \tag{10}\end{align*}
In the second phase, the UAV re-superimposes \hat x_{1}
and \hat x_{2}
according to the power coefficients a_{1}
and a_{2}
, respectively, i.e., x_{\mathrm{ U}}=\sqrt {a_{1}P_{\mathrm{ r}}}\hat x_{1}+\sqrt {a_{2}P_{\mathrm{ r}}}\hat x_{2}
. Thus, the received signals at both \rm D_{1}
and \rm D_{1}
are, respectively, given by \begin{align*} y_{\rm D_{1}} &= h_{\rm ud_{1}}(\sqrt {a_{1} P_{\mathrm{ r}}}\hat x_{1} + \sqrt {a_{2} P_{\mathrm{ r}}} \hat x_{2})+w_{\rm D_{1}}, \tag{11}\\ y_{\rm D_{2}} &= h_{\rm ud_{2}}(\sqrt {a_{1} P_{\mathrm{ r}}}\hat x_{1} + \sqrt {a_{2} P_{\mathrm{ r}}} \hat x_{2})+w_{\rm D_{2}}, \tag{12}\end{align*}
View Source
\begin{align*} y_{\rm D_{1}} &= h_{\rm ud_{1}}(\sqrt {a_{1} P_{\mathrm{ r}}}\hat x_{1} + \sqrt {a_{2} P_{\mathrm{ r}}} \hat x_{2})+w_{\rm D_{1}}, \tag{11}\\ y_{\rm D_{2}} &= h_{\rm ud_{2}}(\sqrt {a_{1} P_{\mathrm{ r}}}\hat x_{1} + \sqrt {a_{2} P_{\mathrm{ r}}} \hat x_{2})+w_{\rm D_{2}}, \tag{12}\end{align*}
where w_{\rm D_{i}}= {\mathcal{ CN}}(0,\sigma _{\rm D_{i}}^{2})
is the AWGN at Di and P_{\mathrm{ r}}
is the transmit power of the UAV given in (7).
\rm D_{2}
decodes \hat x_{2}
by considering \hat x_{1}
as noise, while \rm D_{1}
first decodes \hat x_{2}
and then \hat x_{1}
. Therefore, the SINR of \hat x_{2}
at \rm D_{1}
is expressed as in (13) \begin{equation*} \gamma _{\rm D_{1}}^{\hat x_{2}} =\frac {a_{2} P_{\mathrm{ r}}|h_{\rm ud_{1}}|^{2}}{a_{1} P_{\mathrm{ r}} |h_{\rm ud_{1}}|^{2}+\sigma _{\rm D_{1}}^{2}}. \tag{13}\end{equation*}
View Source
\begin{equation*} \gamma _{\rm D_{1}}^{\hat x_{2}} =\frac {a_{2} P_{\mathrm{ r}}|h_{\rm ud_{1}}|^{2}}{a_{1} P_{\mathrm{ r}} |h_{\rm ud_{1}}|^{2}+\sigma _{\rm D_{1}}^{2}}. \tag{13}\end{equation*}
After \rm D_{1}
performs SIC successfully on \hat x_{2}
, the SINRs of \hat x_{1}
at \rm D_{1}
and \hat x_{2}
at \rm D_{2}
are, respectively, given by \begin{align*} \gamma _{\rm D_{1}}^{\hat x_{1}} &=\frac {a_{1}P_{\mathrm{ r}}|h_{\rm ud_{1}}|^{2}}{\sigma _{\rm D_{1}}^{2}}, \tag{14}\\ \gamma _{\rm D_{2}}^{\hat x_{2}} &=\frac {a_{2} P_{\mathrm{ r}}|h_{\rm ud_{2}}|^{2}}{a_{1} P_{\mathrm{ r}}|h_{\rm ud_{2}}|^{2}+\sigma _{\rm D_{2}}^{2}}. \tag{15}\end{align*}
View Source
\begin{align*} \gamma _{\rm D_{1}}^{\hat x_{1}} &=\frac {a_{1}P_{\mathrm{ r}}|h_{\rm ud_{1}}|^{2}}{\sigma _{\rm D_{1}}^{2}}, \tag{14}\\ \gamma _{\rm D_{2}}^{\hat x_{2}} &=\frac {a_{2} P_{\mathrm{ r}}|h_{\rm ud_{2}}|^{2}}{a_{1} P_{\mathrm{ r}}|h_{\rm ud_{2}}|^{2}+\sigma _{\rm D_{2}}^{2}}. \tag{15}\end{align*}
SECTION III.
Performance Analysis
A. Backgrounds on Blocklength Error Rate
In conventional channel coding theorem, the error probability of the communication system is often investigated with the infinite blocklength. However, in practice, the system’s data rate may be limited due to fixed finite blocklength to ensure target error probability. According to [39], the data rate r_{i}
of finite blocklength m
is approximated as\begin{align*} r_{i}(m, \gamma _{i}, \epsilon _{i}) \approx C(\gamma _{i})-\sqrt {\frac {V(\gamma _{i})}{m}}Q^{-1}(\epsilon _{i})+O\left({\frac {\log _{2} m}{m} }\right), \tag{16}\end{align*}
View Source
\begin{align*} r_{i}(m, \gamma _{i}, \epsilon _{i}) \approx C(\gamma _{i})-\sqrt {\frac {V(\gamma _{i})}{m}}Q^{-1}(\epsilon _{i})+O\left({\frac {\log _{2} m}{m} }\right), \tag{16}\end{align*}
where C(\gamma _{i})=\log _{2}(1+\gamma _{i})
is the Shannon capacity, V(\gamma _{i})=\left({1-\frac {1}{(1+\gamma _{i})^{2}}}\right)(\log _{2}e)^{2}
refers to the channel dispersion, measured in squared information units per channel use, which represents the variation of channel compared with deterministic channel for the same capacity, \epsilon _{i}
is the expected error probability, Q^{-1}(\cdot)
is the inverse Gaussian Q-function Q(x)=\frac {1}{2\pi }\int _{x}^{\infty }\exp \left({-\frac {t^{2}}{2}}\right)dt
, and O\left({\frac {\log _{2} m}{m} }\right)
is the remainder term of order \frac {\log _{2} m}{m}
. Since the blocklength is large enough, i.e., m\ge 100
as given in [39], from (16), we can rewrite the instantaneous BLER as \begin{equation*} \epsilon _{i}\approx Q \left ({(C(\gamma _{i})-r_{i})/\sqrt {V(\gamma _{i})/m}}\right). \tag{17}\end{equation*}
View Source
\begin{equation*} \epsilon _{i}\approx Q \left ({(C(\gamma _{i})-r_{i})/\sqrt {V(\gamma _{i})/m}}\right). \tag{17}\end{equation*}
Let \phi _{\mathcal{ A}}^{x_{i}}
be the event that decoding error of x_{i}
occurs at node {\mathcal{ A}}\in \{\rm UAV, D_{1}, D_{2} \}
and \bar \phi _{\mathcal{ A}}^{x_{i}}
is the complement of \phi _{\mathcal{ A}}^{x_{i}}
. From (9) and (10), the instantaneous BLER when decoding x_{2}
at the UAV is calculated as \begin{equation*} \Pr (\phi _{\mathrm{ AR}}^{x_{2}})= \epsilon _{\mathrm{ AR}}^{x_{2}}\approx Q\left({\frac {C(\gamma _{\mathrm{ U}}^{x_{2}})-r_{2}}{\sqrt {V(\gamma _{\mathrm{ U}}^{x_{2}})/m(1-\kappa)}}}\right), \tag{18}\end{equation*}
View Source
\begin{equation*} \Pr (\phi _{\mathrm{ AR}}^{x_{2}})= \epsilon _{\mathrm{ AR}}^{x_{2}}\approx Q\left({\frac {C(\gamma _{\mathrm{ U}}^{x_{2}})-r_{2}}{\sqrt {V(\gamma _{\mathrm{ U}}^{x_{2}})/m(1-\kappa)}}}\right), \tag{18}\end{equation*}
where \gamma _{\mathrm{ U}}^{x_{2}}
is given in (9) and r_{2}= 2M/m(1-\kappa)
with M
is the total number of bits of x_{2}
. After the UAV decodes and removes x_{2}
in (8) successfully, the instantaneous BLER when decoding x_{1}
at the UAV is \begin{equation*} \Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \bar \phi _{\mathrm{ AR}}^{x_{2}})=\epsilon _{\mathrm{ AR}}^{x_{1}}\approx Q\left({\frac {C(\gamma _{\mathrm{ U}}^{x_{1}})-r_{1}}{\sqrt {V(\gamma _{\mathrm{ U}}^{x_{1}})/m(1-\kappa)}}}\right), \tag{19}\end{equation*}
View Source
\begin{equation*} \Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \bar \phi _{\mathrm{ AR}}^{x_{2}})=\epsilon _{\mathrm{ AR}}^{x_{1}}\approx Q\left({\frac {C(\gamma _{\mathrm{ U}}^{x_{1}})-r_{1}}{\sqrt {V(\gamma _{\mathrm{ U}}^{x_{1}})/m(1-\kappa)}}}\right), \tag{19}\end{equation*}
where \gamma _{\mathrm{ U}}^{x_{1}}
is given in (10) and r_{1}= 2M/m(1-\kappa)
with M
is the number of bits of user \rm D_{1}
. On the other hand, the UAV can decode x_{1}
in the condition of SIC error at x_{2}
, i.e., \Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \phi _{\mathrm{ AR}}^{x_{2}})
. Thus, the probability of error decoding x_{1}
at the UAV is expressed as \begin{align*} \Pr (\phi _{\mathrm{ AR}}^{x_{1}})= \Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \phi _{\mathrm{ AR}}^{x_{2}})\Pr (\phi _{\mathrm{ AR}}^{x_{2}})+\Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \bar \phi _{\mathrm{ AR}}^{x_{2}})\Pr (\bar \phi _{\mathrm{ AR}}^{x_{2}}), \tag{20}\end{align*}
View Source
\begin{align*} \Pr (\phi _{\mathrm{ AR}}^{x_{1}})= \Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \phi _{\mathrm{ AR}}^{x_{2}})\Pr (\phi _{\mathrm{ AR}}^{x_{2}})+\Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \bar \phi _{\mathrm{ AR}}^{x_{2}})\Pr (\bar \phi _{\mathrm{ AR}}^{x_{2}}), \tag{20}\end{align*}
where \Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \phi _{\mathrm{ AR}}^{x_{2}})
is the conditional probability of \phi _{\mathrm{ R}}^{x_{1}}
for a given \phi _{\mathrm{ AR}}^{x_{2}}
. Due to the high interference level from x_{2}
when decoding x_{1}
, we have \Pr (\phi _{\mathrm{ AR}}^{x_{1}}| \phi _{\mathrm{ AR}}^{x_{2}})\approx 1
. From (20), the total BLER when detecting x_{1}
at the UAV is calculated as \begin{align*} \tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}&=1\times {\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\mathrm{ AR}}^{x_{1}}(1-{\epsilon }_{\mathrm{ AR}}^{x_{2}}) \\ &={\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\mathrm{ AR}}^{x_{1}}- {\epsilon }_{\mathrm{ AR}}^{x_{1}}{\epsilon }_{\mathrm{ AR}}^{x_{2}}\approx {\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\mathrm{ AR}}^{x_{1}}. \tag{21}\end{align*}
View Source
\begin{align*} \tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}&=1\times {\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\mathrm{ AR}}^{x_{1}}(1-{\epsilon }_{\mathrm{ AR}}^{x_{2}}) \\ &={\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\mathrm{ AR}}^{x_{1}}- {\epsilon }_{\mathrm{ AR}}^{x_{1}}{\epsilon }_{\mathrm{ AR}}^{x_{2}}\approx {\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\mathrm{ AR}}^{x_{1}}. \tag{21}\end{align*}
Note that in (21), the error in URLLC usually small, ranging from 10−3 to 10−5. Therefore, the term {\epsilon }_{\mathrm{ AR}}^{x_{1}} {\epsilon }_{\mathrm{ AR}}^{x_{2}}\to 0
and can be ignored.
Since the UAV utilizes DF protocol, after receiving the superposed signal, \rm D_{2}
detects x_{2}
directly and \rm D_{1}
applies SIC on x_{2}
to obtain x_{1}
. Thus, it is assumed that Di cannot detect x_{i}
if the UAV cannot detect it, i.e., \Pr (\phi _{\rm D_{i}}^{x_{i}}|\phi _{\mathrm{ AR}}^{x_{i}})=1
. Thus, the BLER when decoding x_{1}
at D1 and decoding x_{2}
at D2 are, respectively, given by \begin{align*} \Pr (\phi _{\rm D_{1}}^{x_{1}}) &= \tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}} +\Pr (\phi _{\rm D_{1}}^{x_{2}})+\Pr (\phi _{\rm D_{1}}^{x_{1}}|\bar \phi _{\rm D_{1}}^{x_{2}})\Pr (\bar \phi _{\rm D_{1}}^{x_{2}}) \\ &=\tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}+{\epsilon }_{\rm D_{1}}^{x_{2}}+\Pr (\phi _{\rm D_{1}}^{x_{1}}|\bar \phi _{\rm D_{1}}^{x_{2}}). \tag{22}\\ \Pr (\phi _{\rm D_{2}}^{x_{2}})&=\Pr (\phi _{\rm D_{2}}^{x_{2}}|\phi _{\mathrm{ AR}}^{x_{2}})\Pr (\phi _{\mathrm{ AR}}^{x_{2}})+\Pr (\phi _{\rm D_{2}}^{x_{2}}|\bar \phi _{\mathrm{ AR}}^{x_{2}})\Pr (\bar \phi _{\mathrm{ AR}}^{x_{2}}) \\ &=1\times \Pr (\phi _{\mathrm{ AR}}^{x_{2}})+\Pr (\phi _{\rm D_{2}}^{x_{2}}|\bar \phi _{\mathrm{ AR}}^{x_{2}})(1-\Pr (\phi _{\mathrm{ AR}}^{x_{2}})). \tag{23}\end{align*}
View Source
\begin{align*} \Pr (\phi _{\rm D_{1}}^{x_{1}}) &= \tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}} +\Pr (\phi _{\rm D_{1}}^{x_{2}})+\Pr (\phi _{\rm D_{1}}^{x_{1}}|\bar \phi _{\rm D_{1}}^{x_{2}})\Pr (\bar \phi _{\rm D_{1}}^{x_{2}}) \\ &=\tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}+{\epsilon }_{\rm D_{1}}^{x_{2}}+\Pr (\phi _{\rm D_{1}}^{x_{1}}|\bar \phi _{\rm D_{1}}^{x_{2}}). \tag{22}\\ \Pr (\phi _{\rm D_{2}}^{x_{2}})&=\Pr (\phi _{\rm D_{2}}^{x_{2}}|\phi _{\mathrm{ AR}}^{x_{2}})\Pr (\phi _{\mathrm{ AR}}^{x_{2}})+\Pr (\phi _{\rm D_{2}}^{x_{2}}|\bar \phi _{\mathrm{ AR}}^{x_{2}})\Pr (\bar \phi _{\mathrm{ AR}}^{x_{2}}) \\ &=1\times \Pr (\phi _{\mathrm{ AR}}^{x_{2}})+\Pr (\phi _{\rm D_{2}}^{x_{2}}|\bar \phi _{\mathrm{ AR}}^{x_{2}})(1-\Pr (\phi _{\mathrm{ AR}}^{x_{2}})). \tag{23}\end{align*}
From (22), the instantaneous BLER of x_{1}
at \rm D_{1}
can be calculated as \begin{equation*} \tilde {\epsilon }_{\rm D_{1}}^{x_{1}}=\tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}+ {\epsilon }_{\rm D_{1}}^{x_{2}}+{\epsilon }_{\rm D_{1}}^{x_{1}}, \tag{24}\end{equation*}
View Source
\begin{equation*} \tilde {\epsilon }_{\rm D_{1}}^{x_{1}}=\tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}+ {\epsilon }_{\rm D_{1}}^{x_{2}}+{\epsilon }_{\rm D_{1}}^{x_{1}}, \tag{24}\end{equation*}
and from (23), the instantaneous BLER of x_{2}
at \rm D_{2}
can be computed as \begin{equation*} \tilde {\epsilon }_{\rm D_{2}}^{x_{2}} ={\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\rm D_{2}}^{x_{2}}(1-{\epsilon }_{\mathrm{ AR}}^{x_{2}})\approx {\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\rm D_{2}}^{x_{2}}, \tag{25}\end{equation*}
View Source
\begin{equation*} \tilde {\epsilon }_{\rm D_{2}}^{x_{2}} ={\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\rm D_{2}}^{x_{2}}(1-{\epsilon }_{\mathrm{ AR}}^{x_{2}})\approx {\epsilon }_{\mathrm{ AR}}^{x_{2}}+{\epsilon }_{\rm D_{2}}^{x_{2}}, \tag{25}\end{equation*}
where {\epsilon }_{\rm D_{1}}^{x_{2}}\approx Q\left({\frac {(C(\gamma _{\rm D_{1}}^{\hat x_{2}})-r_{2})}{\sqrt {V(\gamma _{\rm D_{1}}^ {\hat x_{2} \to \hat x_{1}})/m(1-\kappa)} } }\right)
, {\epsilon }_{\rm D_{1}}^{x_{1}}\approx Q \left({\frac {(C(\gamma _{\rm D_{1}}^{\hat x_{1}})-r_{1})}{\sqrt {V(\gamma _{\rm D_{1}}^{\hat x_{1}})/m(1-\kappa)} }}\right)
, and {\epsilon }_{\rm D_{2}}^{x_{2}}\approx Q\left({\frac {(C(\gamma _{\rm D_{2}}^{\hat x_{2}})-r_{2})}{\sqrt {V(\gamma _{\rm D_{2}}^{\hat x_{2}})/m(1-\kappa)}} }\right)
, \tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}
and \epsilon _{\mathrm{ AR}}^{x_{2}}
are, respectively, given in (21) and (18).
B. Average BLER in Finite Blocklength Regime
From (17), the average BLER at each node can be presented as \begin{equation*} \bar \epsilon _{i}\approx \int _{0}^{\infty } Q\left({\frac {C(\gamma _{i})-r_{i}}{\sqrt {V(\gamma _{i})/m(1-\kappa)}}}\right)f_{\gamma _{i}}(x) dx, \tag{26}\end{equation*}
View Source
\begin{equation*} \bar \epsilon _{i}\approx \int _{0}^{\infty } Q\left({\frac {C(\gamma _{i})-r_{i}}{\sqrt {V(\gamma _{i})/m(1-\kappa)}}}\right)f_{\gamma _{i}}(x) dx, \tag{26}\end{equation*}
where f_{\gamma _{i}}(x)
denotes the PDF of the random variable \gamma _{i}
.
Since it is challenging to derive the exact closed-form expression of (26), we apply the approximate Q-function to solve (26) as similar to [25], [40], [41], and [42], i.e., \begin{align*} {Q\left({\frac {C(\gamma _{i})-r_{i}}{\sqrt {V(\gamma _{i})/m}}}\right)=} \begin{cases} \displaystyle 1, &\gamma _{i}\le \rho _{L}\\ \displaystyle 0.5 - \chi _{i} (\gamma _{i}-\tau _{i}), &\rho _{L} < \gamma _{i} < \rho _{H},\\ \displaystyle 0, &\gamma _{i} \ge \rho _{H} \end{cases} \tag{27}\end{align*}
View Source
\begin{align*} {Q\left({\frac {C(\gamma _{i})-r_{i}}{\sqrt {V(\gamma _{i})/m}}}\right)=} \begin{cases} \displaystyle 1, &\gamma _{i}\le \rho _{L}\\ \displaystyle 0.5 - \chi _{i} (\gamma _{i}-\tau _{i}), &\rho _{L} < \gamma _{i} < \rho _{H},\\ \displaystyle 0, &\gamma _{i} \ge \rho _{H} \end{cases} \tag{27}\end{align*}
where \chi _{i} = [2\pi (2^{2r_{i}}-1)/m(1-\kappa)]^{-1/2}
, \tau _{i}=2^{r_{i}}-1
, \rho _{L}= \tau _{i}-1/(2\chi _{i})
, and \rho _{H}=\tau _{i}+1/(2\chi _{i})
.
From (26) and (27), we can rewrite the average BLER as \begin{equation*} \bar \epsilon _{i}(\Omega _{\ell})\approx \chi _{i}\int _{\rho _{L}}^{\rho _{H}}F_{\gamma _{i}|\Omega _{\ell} }(x|\Omega _{\ell}) dx, \tag{28}\end{equation*}
View Source
\begin{equation*} \bar \epsilon _{i}(\Omega _{\ell})\approx \chi _{i}\int _{\rho _{L}}^{\rho _{H}}F_{\gamma _{i}|\Omega _{\ell} }(x|\Omega _{\ell}) dx, \tag{28}\end{equation*}
where F_{\gamma _{i}|\Omega _{\ell} }(x|\Omega _{\ell})
is the conditional CDF of \gamma _{i}
. To obtain the closed-form of BLER, we first derive F_{\gamma _{i}|\Omega _{\ell} }(x|\Omega _{\ell})
, which depends on the SINRs. The CDFs of these SINRs are given in detail in Appendix.
Replacing the CDFs from (47) and (48) into (28), the average BLERs can be given by the following Propositions.
Proposition 1:
From (21) and (28), the closed-form expression of the average BLERs of x_{1}
at the UAV is \begin{align*} \mathbb {E}\{\tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}\} &\approx ({\bar \epsilon }_{\mathrm{ AR, LoS}}^{x_{2}}+{\bar \epsilon }_{\mathrm{ AR, LoS}}^{x_{1}})P_{\mathrm{ LoS}} \\ &\quad +({\bar \epsilon }_{\mathrm{ AR, NLoS}}^{x_{2}}+{\bar \epsilon }_{\mathrm{ AR, NLoS}}^{x_{1}})P_{\mathrm{ NLoS}}, \tag{29}\end{align*}
View Source
\begin{align*} \mathbb {E}\{\tilde {\epsilon }_{\mathrm{ AR}}^{x_{1}}\} &\approx ({\bar \epsilon }_{\mathrm{ AR, LoS}}^{x_{2}}+{\bar \epsilon }_{\mathrm{ AR, LoS}}^{x_{1}})P_{\mathrm{ LoS}} \\ &\quad +({\bar \epsilon }_{\mathrm{ AR, NLoS}}^{x_{2}}+{\bar \epsilon }_{\mathrm{ AR, NLoS}}^{x_{1}})P_{\mathrm{ NLoS}}, \tag{29}\end{align*}
and from (18), (27) and (28) the closed-form expression of the average BLERs of x_{2}
at the UAV is \begin{equation*} \mathbb {E}\{\epsilon _{\mathrm{ AR}}^{x_{2}}\}= \bar \epsilon _{\mathrm{ AR, LoS}}^{x_{2}}P_{\mathrm{ LoS}}+\bar \epsilon _{\mathrm{ AR, NLoS}}^{x_{2}}P_{\mathrm{ NLoS}}, \tag{30}\end{equation*}
View Source
\begin{equation*} \mathbb {E}\{\epsilon _{\mathrm{ AR}}^{x_{2}}\}= \bar \epsilon _{\mathrm{ AR, LoS}}^{x_{2}}P_{\mathrm{ LoS}}+\bar \epsilon _{\mathrm{ AR, NLoS}}^{x_{2}}P_{\mathrm{ NLoS}}, \tag{30}\end{equation*}
where {\bar \epsilon }_{\mathrm{ AR,LoS}}^{x_{1}}
and {\bar \epsilon }_{\mathrm{ AR,LoS}}^{x_{2}}
are, respectively, given in Chebyshev-Gauss approximation as \begin{align*} \bar \epsilon _{\mathrm{ AR,LoS}}^{x_{2}}&=1-\chi _{2}\sum _{l=0}^{L_{\mathrm{ max}}}\sum _{n=0}^{l}\sum _{\mu =0}^{N}\frac {\pi \beta _{l,n}}{N}\left({\frac {(K+1)u\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}u)} }\right)^{n} \\ &\quad \times \exp \left({-\frac {(K+1)u\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}u)} }\right)\sqrt {1-\psi ^{2}}, \tag{31}\\ {\bar \epsilon }_{\mathrm{ AR, LoS}}^{x_{1}}& =1-\chi _{1}\sum _{l=0}^{L_{\mathrm{ max}}}\sum _{n=0}^{l}\sum _{\mu =0}^{N}\frac {\pi \beta _{l,n}}{N}\left({\frac {(K+1)u\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)^{n} \\ &\quad \times \exp \left({-\frac {(K+1)u\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)\sqrt {1-\psi ^{2}}, \tag{32}\end{align*}
View Source
\begin{align*} \bar \epsilon _{\mathrm{ AR,LoS}}^{x_{2}}&=1-\chi _{2}\sum _{l=0}^{L_{\mathrm{ max}}}\sum _{n=0}^{l}\sum _{\mu =0}^{N}\frac {\pi \beta _{l,n}}{N}\left({\frac {(K+1)u\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}u)} }\right)^{n} \\ &\quad \times \exp \left({-\frac {(K+1)u\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}u)} }\right)\sqrt {1-\psi ^{2}}, \tag{31}\\ {\bar \epsilon }_{\mathrm{ AR, LoS}}^{x_{1}}& =1-\chi _{1}\sum _{l=0}^{L_{\mathrm{ max}}}\sum _{n=0}^{l}\sum _{\mu =0}^{N}\frac {\pi \beta _{l,n}}{N}\left({\frac {(K+1)u\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)^{n} \\ &\quad \times \exp \left({-\frac {(K+1)u\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)\sqrt {1-\psi ^{2}}, \tag{32}\end{align*}
where u= \frac {\rho _{H}-\rho _{L}}{2}\psi +\frac {\rho _{H}+\rho _{L}}{2}
, \psi =cos\left({\frac {(2~\mu -1)\pi }{2N} }\right)
, L_{\mathrm{ max}}\in \{1, \infty \}
, and N
is the number of terms in Chebyshev-Gauss quadrature. To obtain {\bar \epsilon }_{\mathrm{ AR, NLoS}}^{x_{i}}
, we only replace \Omega _{\ell}
by \omega \Omega _{\ell}
from (5) into (31) and (32). It is also used in [32, Eq. (7)].
To calculate \bar \epsilon _{\mathrm{ AR, LoS}}^{x_{2}}
and \bar \epsilon _{\mathrm{ AR, NLoS}}^{x_{2}}
, we replace (47) into (28) and then use the Chebyshev-Gauss approximation. Moreover, we use (48) to calculate \bar \epsilon _{\mathrm{ AR, LoS}}^{x_{1}}
. Note that, when calculating the detecting error of x_{1}
at the UAV, the SIC error of x_{2}
should be considered, as given in (21).
Equations (31) and (32) indicate that the BLERs of x_{1}
and x_{2}
at the UAV depend on the size m(1-\kappa)
of data block over S-UAV link, the average channel gain \Omega _{\mathrm{ su}}
, and the power allocation coefficients a_{1}, a_{2}
. When u> {a_{2}}/{a_{1}}
, the upper bound of the BLER of x_{2}
at the UAV is \bar \epsilon _{\mathrm{ R,LoS/NLoS}}^{x_{2}}=1
.
Proposition 2:
From (21) and (24), the closed-form expression of the average BLER at \rm D_{1}
is \begin{align*} \mathbb {E}\{\tilde {\epsilon }_{\rm D_{1}}^{\mathrm{ e2e}}\}& = ({\bar \epsilon }_{\mathrm{ AR,LoS}}^{x_{2}}+{\bar \epsilon }_{\mathrm{ AR,LoS}}^{x_{1}}+ {\bar \epsilon }_{\rm D_{1},LoS}^{x_{2}}+{\bar \epsilon }_{\rm D_{1},LoS}^{x_{1}})P_{\mathrm{ LoS}} \\ &\quad +({\bar \epsilon }_{\mathrm{ AR,NLoS}}^{x_{2}}+{\bar \epsilon }_{\mathrm{ AR,NLoS}}^{x_{1}}+ {\bar \epsilon }_{\rm D_{1},NLoS}^{x_{2}} \\ &\quad +{\bar \epsilon }_{\rm D_{1},NLoS}^{x_{1}})P_{\mathrm{ NLoS}}, \tag{33}\end{align*}
View Source
\begin{align*} \mathbb {E}\{\tilde {\epsilon }_{\rm D_{1}}^{\mathrm{ e2e}}\}& = ({\bar \epsilon }_{\mathrm{ AR,LoS}}^{x_{2}}+{\bar \epsilon }_{\mathrm{ AR,LoS}}^{x_{1}}+ {\bar \epsilon }_{\rm D_{1},LoS}^{x_{2}}+{\bar \epsilon }_{\rm D_{1},LoS}^{x_{1}})P_{\mathrm{ LoS}} \\ &\quad +({\bar \epsilon }_{\mathrm{ AR,NLoS}}^{x_{2}}+{\bar \epsilon }_{\mathrm{ AR,NLoS}}^{x_{1}}+ {\bar \epsilon }_{\rm D_{1},NLoS}^{x_{2}} \\ &\quad +{\bar \epsilon }_{\rm D_{1},NLoS}^{x_{1}})P_{\mathrm{ NLoS}}, \tag{33}\end{align*}
and from (25) the average BLER at \rm D_{2}
is \begin{align*} \mathbb {E}\{\tilde {\epsilon }_{\rm D_{2}}^{\mathrm{ e2e}}\} &\approx ({\bar \epsilon }_{\mathrm{ AR,LoS}}^{x_{2}}+{\bar \epsilon }_{\rm D_{2},LoS}^{x_{2}})P_{\mathrm{ LoS}} \\ &\quad +({\bar \epsilon }_{\mathrm{ AR,NLoS}}^{x_{2}}+{\bar \epsilon }_{\rm D_{2},NLoS}^{x_{2}})P_{\mathrm{ NLoS}}, \tag{34}\end{align*}
View Source
\begin{align*} \mathbb {E}\{\tilde {\epsilon }_{\rm D_{2}}^{\mathrm{ e2e}}\} &\approx ({\bar \epsilon }_{\mathrm{ AR,LoS}}^{x_{2}}+{\bar \epsilon }_{\rm D_{2},LoS}^{x_{2}})P_{\mathrm{ LoS}} \\ &\quad +({\bar \epsilon }_{\mathrm{ AR,NLoS}}^{x_{2}}+{\bar \epsilon }_{\rm D_{2},NLoS}^{x_{2}})P_{\mathrm{ NLoS}}, \tag{34}\end{align*}
where {\bar \epsilon }_{\mathrm{ R,LoS/NLoS}}^{x_{1}}
and {\bar \epsilon }_{\mathrm{ R,LoS/NLoS}}^{x_{2}}
are given in Proposition 1. The closed-form expressions of {\bar \epsilon }_{\rm D_{1},LoS}^{x_{2}}
, {\bar \epsilon }_{\rm D_{1},LoS}^{x_{1}}
, and {\bar \epsilon }_{\rm D_{2},LoS}^{x_{2}}
are given in (35), (36) and (37), as shown at the bottom of next the page, \begin{align*} {\bar \epsilon }_{\rm D_{1},LoS}^{x_{2}}&=1-\chi _{2}\sum _{l=0}^{L_{\mathrm{ max}}} \sum _{n=0}^{l}\sum _{j=0}^{J_{\mathrm{ max}}}\frac { \beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\sum _{\mu =0}^{N}\frac {\pi }{N} \left({\frac {(K+1)\sigma _{\rm D_{1}}^{2} \Psi (u) }{\Delta \Omega _{\rm ud_{1}}} }\right)^{n} \\ &\quad \times 2\left({\frac {\sigma _{\rm D_{1}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{1}}} \Psi (u) }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)^{2} \Psi (u) \sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}} \Omega _{\mathrm{ bu}}} }}\right)e^{-\frac {(K+1)\sigma _{\rm D_{1}}^{2} \Psi (u)}{\Delta \Omega _{\rm ud_{1}}} }\sqrt {1-\psi ^{2}},. \tag{35}\end{align*}
View Source
\begin{align*} {\bar \epsilon }_{\rm D_{1},LoS}^{x_{2}}&=1-\chi _{2}\sum _{l=0}^{L_{\mathrm{ max}}} \sum _{n=0}^{l}\sum _{j=0}^{J_{\mathrm{ max}}}\frac { \beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\sum _{\mu =0}^{N}\frac {\pi }{N} \left({\frac {(K+1)\sigma _{\rm D_{1}}^{2} \Psi (u) }{\Delta \Omega _{\rm ud_{1}}} }\right)^{n} \\ &\quad \times 2\left({\frac {\sigma _{\rm D_{1}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{1}}} \Psi (u) }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)^{2} \Psi (u) \sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}} \Omega _{\mathrm{ bu}}} }}\right)e^{-\frac {(K+1)\sigma _{\rm D_{1}}^{2} \Psi (u)}{\Delta \Omega _{\rm ud_{1}}} }\sqrt {1-\psi ^{2}},. \tag{35}\end{align*}
\begin{align*} {\bar \epsilon }_{\rm D_{1},LoS}^{x_{1}}&=1-\chi _{1}\sum _{l=0}^{L_{\mathrm{ max}}} \sum _{n=0}^{l}\sum _{j=0}^{J_{\mathrm{ max}}}\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\sum _{\mu =0}^{N}\frac {\pi }{N}\left({\frac {(K+1)u\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right)^{n} e^{-\frac {(K+1)u\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} } \\ &\quad \times 2\left({\frac {u\sigma _{\rm D_{1}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)^{2}u\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}\Omega _{\mathrm{ bu}}a_{1}}} }\right) \sqrt {1-\psi ^{2}}, \tag{36}\end{align*}
View Source
\begin{align*} {\bar \epsilon }_{\rm D_{1},LoS}^{x_{1}}&=1-\chi _{1}\sum _{l=0}^{L_{\mathrm{ max}}} \sum _{n=0}^{l}\sum _{j=0}^{J_{\mathrm{ max}}}\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\sum _{\mu =0}^{N}\frac {\pi }{N}\left({\frac {(K+1)u\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right)^{n} e^{-\frac {(K+1)u\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} } \\ &\quad \times 2\left({\frac {u\sigma _{\rm D_{1}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)^{2}u\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}\Omega _{\mathrm{ bu}}a_{1}}} }\right) \sqrt {1-\psi ^{2}}, \tag{36}\end{align*}
\begin{align*} {\bar \epsilon }_{\rm D_{2},LoS}^{x_{2}}&=1-\chi _{2}\sum _{l=0}^{L_{\mathrm{ max}}} \sum _{n=0}^{l}\sum _{j=0}^{J_{\mathrm{ max}}}\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\sum _{\mu =0}^{N}\frac {\pi }{N}\left({\frac {(K+1)\sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}}}\Psi (u) }\right)^{n} \\ &\quad \times 2\left({\frac { \sigma _{\rm D_{2}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{2}} } \Psi (u) }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)^{2} \sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}} \Omega _{\mathrm{ bu}}}\Psi (u) }}\right)e^{-\frac {(K+1) \sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}} } \Psi (u) } \sqrt {1-\psi ^{2}}, \tag{37}\end{align*}
View Source
\begin{align*} {\bar \epsilon }_{\rm D_{2},LoS}^{x_{2}}&=1-\chi _{2}\sum _{l=0}^{L_{\mathrm{ max}}} \sum _{n=0}^{l}\sum _{j=0}^{J_{\mathrm{ max}}}\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\sum _{\mu =0}^{N}\frac {\pi }{N}\left({\frac {(K+1)\sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}}}\Psi (u) }\right)^{n} \\ &\quad \times 2\left({\frac { \sigma _{\rm D_{2}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{2}} } \Psi (u) }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)^{2} \sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}} \Omega _{\mathrm{ bu}}}\Psi (u) }}\right)e^{-\frac {(K+1) \sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}} } \Psi (u) } \sqrt {1-\psi ^{2}}, \tag{37}\end{align*}
respectively. To obtain {\bar \epsilon }_{\rm D_{1},LoS}^{x_{2}}
, {\bar \epsilon }_{\rm D_{1},NLoS}^{x_{1}}
, and {\bar \epsilon }_{\rm D_{2},NLoS}^{x_{2}}
, we only replace \Omega _{\ell}
by \omega \Omega _{\ell}
from (5) into (35), (36) and (37), where \Psi (u) =\frac {u}{a_{2}-a_{1}u}
, \Delta = \frac {2\kappa m \xi P_{\mathrm{ b}}}{1-\kappa }
, \beta _{l,n}=\frac {K^{l}}{l!n!e^{K}}
, u= \frac {\rho _{H}-\rho _{L}}{2}\psi +\frac {\rho _{H}+\rho _{L}}{2}
, \psi =cos\left({\frac {(2~\mu -1)\pi }{2N} }\right)
, L_{\mathrm{ max}}\in \{1, \infty \}
, and J_{\mathrm{ max}}\in \{1, \infty \}
.
To obtain (35), (36), and (37), we replace (57), (59), and (61), as shown at the top of page 13, into (28), respectively, and then do some manipulations. In contrast, after replacing (58), (60) and (62), as shown at the top of page 13, into (28) we obtain {\bar \epsilon }_{\rm D_{1},NLoS}^{x_{2}}
, {\bar \epsilon }_{\rm D_{1},NLoS}^{x_{1}}
, and {\bar \epsilon }_{\rm D_{2},NLoS}^{x_{2}}
, respectively. Note that when considering the BLER at Di, we must investigate the error at the UAV transferred to Di.
Equations (33) and (34) show that the BLER at Di is a function of the transmit power of PB, the average channel gain \Omega _{\rm UD_{i}}
, the blocklength m(1-\kappa)
over {\mathrm{ UAV}}-{\mathrm{ D}}_{i}
, link. When u> {a_{2}}/{a_{1}}
, the upper bounds of the BLERs of x_{2}
at \rm D_{1}
and \rm D_{2}
are, respectively, {\bar \epsilon }_{\rm D_{1}, LoS/NLoS}^{x_{2}}=1
and {\bar \epsilon }_{\rm D_{2},LoS/NLoS}^{x_{2}}=1
.
C. Asymptotic Expression of The Average BLER
For insights into the impacts of system parameters on the BLER performance, we present the asymptotic of the average BLER. As mentioned in [25], the integral in (28) can be approximated by using the first-order Riemann integral, i.e., \int _{a}^{b}f(x)dx=(b-a)f\left({\frac {a+b}{2}}\right)
. Thus, we can rewrite the average BLER as \begin{equation*} \bar \epsilon _{i}(\Omega _{\ell})\approx \chi _{i} (\rho _{H}-\rho _{L})F_{\gamma _{i}|\Omega _{\ell} }\left({\frac {\rho _{H}+\rho _{L}}{2}|\Omega _{\ell} }\right), \tag{38}\end{equation*}
View Source
\begin{equation*} \bar \epsilon _{i}(\Omega _{\ell})\approx \chi _{i} (\rho _{H}-\rho _{L})F_{\gamma _{i}|\Omega _{\ell} }\left({\frac {\rho _{H}+\rho _{L}}{2}|\Omega _{\ell} }\right), \tag{38}\end{equation*}
where \chi _{i}
, \rho _{H}
, and \rho _{L}
are given in (27). After replacing \rho _{H}
and \rho _{L}
into (38), the BLER can be written as \begin{equation*} \bar \epsilon _{i}(\Omega _{\ell})\approx F_{\gamma _{i}|\Omega _{\ell} }(\tau _{i}|\Omega _{\ell}), \tag{39}\end{equation*}
View Source
\begin{equation*} \bar \epsilon _{i}(\Omega _{\ell})\approx F_{\gamma _{i}|\Omega _{\ell} }(\tau _{i}|\Omega _{\ell}), \tag{39}\end{equation*}
where \tau _{i}=2^{r_{i}}-1
. Since \tau _{i}
is small enough and a_{2}
is much larger than a_{1}
, we can present the series of e^{x}=\sum _{\mu =0}^{\infty }\frac {(-1)^{\mu} x^{\mu} }{\mu !}
and the approximate of the BLERs at the UAV as \begin{align*} \bar \epsilon _{\mathrm{ AR,LoS}}^{x_{2}}&\approx 1-\sum _{l=0}^{L_{\mathrm{ max}}}\sum _{n=0}^{l}\sum _{\mu =0}^{N_{\mathrm{ max}}}\frac {(-1)^{\mu} \beta _{l,n} \left({\frac {(K+1)\tau _{i}\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}\tau _{i})} }\right)^{n+\mu }}{\mu !}, \tag{40}\\ {\bar \epsilon }_{\mathrm{ AR, LoS}}^{x_{1}}& \approx 1-\sum _{l=0}^{L_{\mathrm{ max}}}\sum _{n=0}^{l}\sum _{\mu =0}^{N_{\mathrm{ max}}}\frac {(-1)^{\mu} \beta _{l,n}}{\mu !}\left({\frac {(K+1)\tau _{i}\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)^{n+\mu }. \tag{41}\end{align*}
View Source
\begin{align*} \bar \epsilon _{\mathrm{ AR,LoS}}^{x_{2}}&\approx 1-\sum _{l=0}^{L_{\mathrm{ max}}}\sum _{n=0}^{l}\sum _{\mu =0}^{N_{\mathrm{ max}}}\frac {(-1)^{\mu} \beta _{l,n} \left({\frac {(K+1)\tau _{i}\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}\tau _{i})} }\right)^{n+\mu }}{\mu !}, \tag{40}\\ {\bar \epsilon }_{\mathrm{ AR, LoS}}^{x_{1}}& \approx 1-\sum _{l=0}^{L_{\mathrm{ max}}}\sum _{n=0}^{l}\sum _{\mu =0}^{N_{\mathrm{ max}}}\frac {(-1)^{\mu} \beta _{l,n}}{\mu !}\left({\frac {(K+1)\tau _{i}\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)^{n+\mu }. \tag{41}\end{align*}
For calculating the BLERs of UAV-Di link, we replace \tau _{i}
by x
into the CDFs in (57), (59) and (61). Similar to Proposition 1, we replace \Omega _{\ell}
by \omega \Omega _{\ell}
to obtain the BLER at Di in NLoS condition.
SECTION IV.
Throughput Analysis
When the blocklength is very large, the ergodic capacity is always used as an evaluating metric. In contrast, if the blocklength is short, the throughput will be used instead of the ergodic capacity. In this section, we derive the throughput of the investigated NOMA-UAV-SPC system. The throughput of a short-packet communication system is defined as the number of successfully decoded packets per second [39]. Throughput measures the efficiency and effectiveness of the data processing in the considered system. As the block error rate increases, the throughput tends to decrease or vice versa. For a given size M=M_{I}+M_{e}
bits propagated over m
channels with error probability \epsilon
, the throughput is calculated as [10] \begin{align*} \tau _{\rm D_{i}}^{\mathrm{ e2e}} =\frac {M-M_{e}}{M}r_{i}(1-\bar \epsilon _{\rm D_{i}}^{\mathrm{ e2e}})=\left({1-\frac {M_{e}}{M}}\right)r_{i}(1-\bar \epsilon _{\rm D_{i}}^{\mathrm{ e2e}}), \tag{42}\end{align*}
View Source
\begin{align*} \tau _{\rm D_{i}}^{\mathrm{ e2e}} =\frac {M-M_{e}}{M}r_{i}(1-\bar \epsilon _{\rm D_{i}}^{\mathrm{ e2e}})=\left({1-\frac {M_{e}}{M}}\right)r_{i}(1-\bar \epsilon _{\rm D_{i}}^{\mathrm{ e2e}}), \tag{42}\end{align*}
where M_{I}
is the number of information bits, M_{e}
is the number of training bits, and \bar \epsilon _{\rm D_{i}}^{\mathrm{ e2e}}
is the average BLER given (33) and (34).
For the investigated UAV-NOMA-SPC system, the total throughput is computed as\begin{align*} \tau (M_{e}) &= \tau _{\rm D_{1}}^{\mathrm{ e2e}}+\tau _{\rm D_{2}}^{\mathrm{ e2e}} \\ & =\left({1-\frac {M_{e}}{M}}\right)\big [r_{1}(1-\bar \epsilon _{\rm D_{1}}^{\mathrm{ e2e}})+r_{2}(1-\bar \epsilon _{\rm D_{2}}^{\mathrm{ e2e}})\big]. \tag{43}\end{align*}
View Source
\begin{align*} \tau (M_{e}) &= \tau _{\rm D_{1}}^{\mathrm{ e2e}}+\tau _{\rm D_{2}}^{\mathrm{ e2e}} \\ & =\left({1-\frac {M_{e}}{M}}\right)\big [r_{1}(1-\bar \epsilon _{\rm D_{1}}^{\mathrm{ e2e}})+r_{2}(1-\bar \epsilon _{\rm D_{2}}^{\mathrm{ e2e}})\big]. \tag{43}\end{align*}
It is noted that, for a fixed size of information data, increasing M_{e}
will reduce the rate (M-M_{e})/M
, which then improves the system throughput. However, a larger M_{e}
leads to less spectrum efficiency, i.e., the number of information bits is decreased over the same channel uses. On the other hand, reducing the number of information bits, in turn, reduces the throughput. Hence, there is a trade-off between the number of information bits and the number of training bits that maximizes the system throughput.
SECTION V.
Numerical Results
In this section, we provide the analytical and simulation results of the average BLER and throughput of the considered NOMA-UAV relay system to evaluate the performance of the investigated system and validate the analytical expressions of BLER and throughput in the previous sections. We use 10\times 2^{14}
independent trials for Monte-Carlo simulations. Since the LoS links dominate the reflection and scattering links, the Rician factor K
is integer [43]. Unless otherwise stated, we let the number of transmitted bits M=256
and M=128
, the packet length m=200
. The locations of all nodes are set as follows: \rm S(-300, 0, 0)
, \rm PB(-100, -100, 0)
, {\rm D_{1}}
(200, 0, 0), {\rm D_{2}}
(250, 100, 0), the starting location of the UAV is \textbf {q}_{I}=(-200, 0, 150)
and the ending location of the UAV is \textbf {q}_{F}=(200, 0, 150)
. The coefficients for different urban environments are given in Table 2. Unless otherwise indicated in the figures, parameter settings are presented in Table 3. For achieving the BLERs threshold of the system, we set SNR = 30 dB [14], [22] and the UAV velocity v
= 10 m/s.
Fig. 2 plots the average BLERs of x_{1}
and x_{2}
at the UAV using Proposition 1 and the average BLERs of x_{1}
and x_{2}
at D_{1}
and D_{2}
using Proposition 2. Moreover, the BLERs of UAV–\rm D_{1}
and UAV–\rm D_{2}
channels are also given. As observed from Fig. 2, the BLERs of UAV–\rm D_{1}
and UAV–\rm D_{2}
channels do not change with the SNR because the transmit power at the UAV is fixed. In contrast, the BLERs of x_{1}
and x_{2}
at the UAV decrease with the increase of the SNR. In contrast, the BLERs of the average BLERs of x_{1}
and x_{2}
at D_{1}
and D_{2}
(Proposition 2) are first decreased as the SNR increases and then are saturated as the SNR becomes higher. This feature is because the errors of the first hop are transferred to the second hop, i.e., the end-to-end BLERs are the cumulative errors at UAV and Di. In addition, the error of x_{1}
at \rm D_{1}
is lower than that of x_{2}
at \rm D_{2}
because \rm D_{1}
detects x_{1}
after performing SIC on x_{2}
, i.e., without interference, while \rm D_{2}
detects x_{2}
by considering x_{1}
as the interference. Finally, the approximate and simulation results closely match the exact ones.
Fig. 3 demonstrates the average BLER of x_{1}
and x_{2}
at \rm D_{1}
and \rm D_{2}
versus the SNR for different values of Rice factor K
. Firstly, we can see that the average BLERs decrease when K
increases because increasing K
makes the LoS probabilities higher. Secondly, these average BLERs linearly reduce when SNR < 25 dB, and then the floor in the high SNR regime. The reason behind this feature is that there always exist interferences among signals in power-domain NOMA systems that limit the system performance. Similar behaviors were also mentioned in [3] and [8]. Moreover, the BLER of x_{1}
at \rm D_{1}
is lower than that of x_{2}
at \rm D_{2}
because the duration for detecting x_{1}
only takes one time slot.
Fig. 4 shows the average BLERs of x_{1}
and x_{2}
at \rm D_{1}
and \rm D_{2}
versus the altitude H
of the UAV for different urban environments and Rice factor K
with SNR = 30
dB, P_{\mathrm{ b}}= 100
W, packet size M = 256
bits, and blocklength m=200
. When the altitude of the UAV is low (i.e., H=5
m), the path-loss is high because the signal propagation on the ground is affected by severe blockages, \alpha (0)=3.5
, and P_{\mathrm{ Los}}(0)\to 0
. When H
increases, the BLERs decrease to the minimum value and then increase. It implies that there are the optimal altitudes of the UAV that provide the lowest BLERs. We observe that these minimum values are different and depend on the urban environments. The reason behind this feature is that when the altitude of the UAV becomes higher, the LoS probability is also higher, which in turn improves the channel gain. In contrast, a higher UAV’s altitude makes the communication link longer, resulting in higher path loss. On the other hand, the error at \rm D_{1}
is higher than that at \rm D_{2}
because the SIC technique is applied at \rm D_{1}
, providing interference-free at \rm D_{1}
. Finally, the urban environment gives similar BLERs as dense urban.
Fig. 5 depicts the average BLERs of x_{1}
and x_{2}
at \rm D_{1}
and \rm D_{2}
versus the location of the UAV for different environments and locations of PB. As shown in Fig. 5, since the path-loss of the urban environment is higher than that of the suburban environment, the urban environment has worse BLER performance. On the other hand, the BLER of x_{2}
at \rm D_{2}
is lower than that of x_{1}
at \rm D_{1}
. It is because the detecting error of x_{2}
impacts the BLER of x_{1}
at \rm D_{1}
, and the error at the UAV is transferred to \rm D_{1}
. Moreover, the location of PB greatly influences the minimal BLERs. Particularly, for [x_{\mathrm{ p}}, y_{\mathrm{ p}}]=[{50, 0}]
, the minimal BLER occurs at x_{\mathrm{ U}}=50
(m), while [x_{\mathrm{ p}}, y_{\mathrm{ p}}]=[{100, 0}]
, the minimal BLER happens at x_{\mathrm{ U}}=100
(m). It means the best BLER performance is achieved when the UAV is right above the PB, which is reasonable because the distance between the PB and the UAV is shortest, leading to the highest amount of harvested energy. Moreover, there exists a location of the UAV that gives the best BLER performance.
Fig. 6 presents the average BLERs of x_{1}
and x_{2}
at \rm D_{1}
and \rm D_{2}
versus the blocklength (the channel utilization) m
with the fixed number of training bits and information bits. For comparison, we also give the BLER of the UAV-OMA-SPC system. From Fig. 6, we see that the BLERs are reduced as the blocklength gets larger. It means that, for a fixed number of transmitted information bits, increasing the number of channel utilization, i.e., reducing the number of bits propagating over the channel, results in improved BLER performance. However, it may reduce the spectrum efficiency. Furthermore, increasing K
means the LoS channel gain is higher, thus improving BLER performance. Note that when K=0
, the channel fading follows the Rayleigh distribution. On the other hand, the BLER of the UAV-NOMA-SPC system is better than that of the UAV-OMA-SPC system because the system performance is linearly proportional to the bandwidth usage.
Fig. 7 shows the average BLERs of x_{1}
and x_{2}
at \rm D_{1}
and \rm D_{2}
versus the switching ratio \kappa
for different transmit power of PB. From Fig. 7, we see that there exists the optimal values \kappa _{\mathrm{ opt}}
of \kappa
, which minimizes the average BLERs. Moreover, different \kappa _{\mathrm{ opt}}
minimal BLERs can be achieved for different transmit power of PB. On the other hand, the BLER performance of x_{1}
at \rm D_{1}
is lower than that of x_{2}
at \rm D_{2}
. In addition, the energy harvesting time must be appropriately determined to ensure enough time for signal processing. Moreover, larger \kappa
means the transmit power of PB is higher, i.e., the signal processing time is shorter. In other words, the signal processing time can be reduced for a fixed error threshold when the transmit power is higher.
Fig. 8 illustrates the average BLERs of x_{1}
and x_{2}
at the UAV, \rm D_{1}
, and \rm D_{2}
versus the LoS probability for different packet sizes, SNR = 30
dB and m=200
. Note that only the channels used for actual data transmission are considered; thus, the number of used channels for training is out of the scope. As shown in Fig. 8, the BLERs decrease as the LoS probability increases. Moreover, when \omega =1
, the system achieves ideal transmission as free-space communication, and when \omega =0
, BLERs are almost equal to one. On the other hand, the BLERs of x_{1}
are lower than those of x_{2}
because the interference from x_{1}
impacts the signal detection of x_{2}
. Additionally, for the same number of used channels, the BLERs in the case of a small number of transmitted bits (i.e., M=128
) is better than in the case of a large number of transmitted bits (i.e., M=256
).
Fig. 9 plots the throughput of Di and the whole system versus the SNR in dB for different velocities of the UAV. From Fig. 9, we see that the throughput of x_{1}
is higher than that of x_{2}
, which means the possibility of successfully detecting x_{1}
is higher. It is because x_{2}
is detected by considering x_{1}
as interference, while x_{1}
is detected after successfully performing SIC on x_{2}
. On the other hand, the velocity of the UAV significantly affects the achieved throughput. Specifically the throughput when the UAV is stationary (v=0
) is better than the throughput when v=20
, i.e., \tau =12
bit/s/Hz versus \tau = 8
bit/s/Hz. Moreover, the throughput is saturated in the high SNR region (i.e., SNR > 20 dB), confirming Remark 3, i.e., the system performance is constrained by the transmit power of PB.
Fig. 10 depicts the throughput of Di and the whole system versus the number of training bits for different data rates. As observed in Fig.10, higher data rate r
leads to better throughput for the same number of training bits M_{e}
. In addition, a higher data rate needs more training bits, i.e., for the case r=2
, the maximal throughput is obtained at 80 training bits, while for the case r=4
, nearly 130 training bits are needed to achieve the maximal throughput. Moreover, the throughputs increase with M_{e}
to the maximal values and then decrease as M_{e}
increases further. It is because for a given bit stream, increasing the number of training bits reduces the number of information bits, i.e., lower throughput. On the other hand, lowering the number of training bits increases the decoding error, i.e., lower system throughput. Furthermore, the analysis results are consistent with the simulation results, confirming the correctness of the mathematical analysis.
Fig. 11 depicts the throughputs versus the power allocation for \rm D_{1}
, i.e., a_{1}
for fixed transmit power SNR = 30 dB and data rate r=4
. It is noted that the power allocation for \rm D_{2}
is a_{2}=1-a_{1}
. When the power allocation coefficient a_{1}
increases from 0.4 to 1, the sum throughput and throughput of \rm D_{2}
increase, reach the maximal value, and then reduce. Meanwhile, the throughput of \rm D_{1}
continuously increases. It is because higher a_{1}
(or lower a_{2}
) means more power is allocated to \rm D_{1}
, leading to higher throughput. On the other hand, we also see that the optimal system throughput is obtained at a_{1}=0.7
and the balanced throughputs of \rm D_{1}
and \rm D_{2}
are achieved at a_{1}\approx 0.63
.
In this paper, we have analyzed the performance of the UAV-assisted NOMA relay system for SPC, where the UAV harvested energy from a power beacon to support the transmissions of finite blocklength packets from a source to two destinations. The system performance in terms of BLER and throughput over Rician fading channels was investigated. Based on the approximate Chebyshev-Gauss quadrature and the first-order Riemann integral, we obtained the closed-form expressions of the BLERs of each hop and the whole path. Simulation results verified all analytical results. The results indicated that the optimal altitude of the UAV is H\approx 100
m provided the best system BLERs. Moreover, the time switching ratio energy harvesting \kappa = 0.35
gave the smallest BLER. The number of training bits was chosen in the range 80 < M_{e} < 130
to maximize the throughput. The BLER of the UAV-NOMA-SPC was compared with that of the UAV-OMA-SPC systems, indicating that the UAV-NOMA-SPC had lower BLERs. The considered system is suitable for narrow-band systems in the cases the infrastructure systems cannot be deployed, is overloaded, or broken. The considered system can be applied to various IoT applications. For example, in a smart traffic system, \rm D_{1}
can be a remote-control car receiving control messages that usually contain a few bytes but are time-critical. At the same time, \rm D_{2}
can be a self-driving car receiving the confidential driving routes from S. Moreover, the considered system model can be used for an artillery targeting center controlling many artillery units through a UAV.
Appendix
This appendix provides step-by-step derivations to obtain the CDF of the SINR at each node with the Rician fading channel. Since X
has Rician distribution, after applying the first-order Marcum Q-function, we have \begin{equation*} F_{X}(x) = 1-Q_{1}(\sqrt {2K}, \sqrt {2\beta _{i} x}), \tag{44}\end{equation*}
View Source
\begin{equation*} F_{X}(x) = 1-Q_{1}(\sqrt {2K}, \sqrt {2\beta _{i} x}), \tag{44}\end{equation*}
where \beta _{i}=\frac {K+1}{\Omega _{i}}
with \Omega _{i}=\mathbb {E}\{X\}
is the expected value of X
. Using [43, Eq. (4.18)] and changing the zero-order modified Bessel function into the series formulas, we obtain F_{X}(x)
and f_{X}(x)
as \begin{align*} F_{X}(x) & = 1-\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}(\beta _{i} x_{i})^{n}\exp (-\beta _{i} x_{i}), \tag{45}\\[3pt] f_{X}(x) & = \frac {\beta _{i}}{e^{K}}\exp (-\beta _{i}x)\sum _{j=0}^{\infty }\frac {1}{(j!)^{2}}\left({\frac {K(K+1)x}{\Omega _{i}} }\right)^{j}, \tag{46}\end{align*}
View Source
\begin{align*} F_{X}(x) & = 1-\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}(\beta _{i} x_{i})^{n}\exp (-\beta _{i} x_{i}), \tag{45}\\[3pt] f_{X}(x) & = \frac {\beta _{i}}{e^{K}}\exp (-\beta _{i}x)\sum _{j=0}^{\infty }\frac {1}{(j!)^{2}}\left({\frac {K(K+1)x}{\Omega _{i}} }\right)^{j}, \tag{46}\end{align*}
where \beta _{l,n}=\frac {K^{l}}{l!n!e^{K}}
.
From (5), (9), and (10), we have F_{\gamma _{\mathrm{ U}}^{x_{1}}}(x)
and F_{\gamma _{\mathrm{ U}}^{x_{2}}}(x)
as \begin{align*} F_{\gamma _{\mathrm{ U}}^{x_{2}}}(x) &= P_{\mathrm{ LoS}} \underbrace {\Pr \left({|h_{\mathrm{ su}}|^{2} < \frac {x\sigma _{\mathrm{ R}}^{2}}{P_{\mathrm{ s}}(a_{2}-a_{1}x)}|_{\omega =1}}\right)}_{\cal I_{1}} \\[3pt] &\quad + P_{\mathrm{ NLoS}} \underbrace {\Pr \left({|h_{\mathrm{ su}}|^{2} < \frac {x\sigma _{\mathrm{ R}}^{2}}{P_{\mathrm{ s}}(a_{2}-a_{1}x)}|_{\omega < 1}}\right)}_{\cal I_{2}}, \tag{47}\\[3pt] F_{\gamma _{\mathrm{ U}}^{x_{1}}}(x) &= P_{\mathrm{ LoS}}\underbrace {\Pr \left({|h_{\mathrm{ su}}|^{2} < \frac {x\sigma _{\mathrm{ R}}^{2}}{a_{1}P_{\mathrm{ s}}}|_{\omega =1}}\right)}_{\cal I_{3}} \\[3pt] &\quad +P_{\mathrm{ NLoS}} \underbrace {\Pr \left({|h_{\mathrm{ su}}|^{2} < \frac {x\sigma _{\mathrm{ R}}^{2}}{a_{1}P_{\mathrm{ s}}}|_{\omega < 1}}\right)}_{\cal I_{4}}. \tag{48}\end{align*}
View Source
\begin{align*} F_{\gamma _{\mathrm{ U}}^{x_{2}}}(x) &= P_{\mathrm{ LoS}} \underbrace {\Pr \left({|h_{\mathrm{ su}}|^{2} < \frac {x\sigma _{\mathrm{ R}}^{2}}{P_{\mathrm{ s}}(a_{2}-a_{1}x)}|_{\omega =1}}\right)}_{\cal I_{1}} \\[3pt] &\quad + P_{\mathrm{ NLoS}} \underbrace {\Pr \left({|h_{\mathrm{ su}}|^{2} < \frac {x\sigma _{\mathrm{ R}}^{2}}{P_{\mathrm{ s}}(a_{2}-a_{1}x)}|_{\omega < 1}}\right)}_{\cal I_{2}}, \tag{47}\\[3pt] F_{\gamma _{\mathrm{ U}}^{x_{1}}}(x) &= P_{\mathrm{ LoS}}\underbrace {\Pr \left({|h_{\mathrm{ su}}|^{2} < \frac {x\sigma _{\mathrm{ R}}^{2}}{a_{1}P_{\mathrm{ s}}}|_{\omega =1}}\right)}_{\cal I_{3}} \\[3pt] &\quad +P_{\mathrm{ NLoS}} \underbrace {\Pr \left({|h_{\mathrm{ su}}|^{2} < \frac {x\sigma _{\mathrm{ R}}^{2}}{a_{1}P_{\mathrm{ s}}}|_{\omega < 1}}\right)}_{\cal I_{4}}. \tag{48}\end{align*}
Applying (45) for (47) and (48), we have the CDFs of the SNRs of x_{1}
and x_{2}
at the UAV in the cases of LoS and NLoS communications and with the average power gain \Omega _{\ell}
given in (5) as \begin{align*} {\mathcal{ I}}_{1}&= 1-\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}\left({\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}x)}}, \tag{49}\\ {\mathcal{ I}}_{2}&= 1-\!\!\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}\left({\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\omega \Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}x)} }\right)^{n}\!\! e^{-\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\omega \Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}x)}}, \tag{50}\\ {\mathcal{ I}}_{3}&= 1-\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}\left({\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)^{n}e^{-\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}}}, \tag{51}\\ {\mathcal{ I}}_{4}&= 1-\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}\left({\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\omega \Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)^{n}e^{-\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\omega \Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}}}. \tag{52}\end{align*}
View Source
\begin{align*} {\mathcal{ I}}_{1}&= 1-\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}\left({\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}x)}}, \tag{49}\\ {\mathcal{ I}}_{2}&= 1-\!\!\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}\left({\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\omega \Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}x)} }\right)^{n}\!\! e^{-\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\omega \Omega _{\mathrm{ su}}P_{\mathrm{ s}}(a_{2}-a_{1}x)}}, \tag{50}\\ {\mathcal{ I}}_{3}&= 1-\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}\left({\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)^{n}e^{-\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}}}, \tag{51}\\ {\mathcal{ I}}_{4}&= 1-\sum _{l=0}^{\infty }\sum _{n=0}^{l}\beta _{l,n}\left({\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\omega \Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}} }\right)^{n}e^{-\frac {(K+1)x\sigma _{\mathrm{ R}}^{2}}{\omega \Omega _{\mathrm{ su}}P_{\mathrm{ s}}a_{1}}}. \tag{52}\end{align*}
Next, we calculate the CDFs for \gamma _{\rm D_{1}}^{\hat x_{2}}, \gamma _{\rm D_{1}}^{\hat x_{1}}
and \gamma _{\rm D_{2}}^{\hat x_{2}}
given in (13), (14), and (15), respectively. From (13), we can rewrite the CDF of \gamma _{\rm D_{1}}^{\hat x_{2}}
as \begin{align*} F_{\gamma _{\rm D_{1}}^{\hat x_{2}}}(x) &= \underbrace {P_{\mathrm{ LoS}}\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{1}}|^{2} < \frac {x\sigma _{\rm D_{1}}^{2}}{\Delta (a_{2}-a_{1}x)}|_{\omega =1}}\right)}_{\cal I_{5}} \\ &\quad +P_{\mathrm{ NLoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{1}}|^{2} < \frac {x\sigma _{\rm D_{1}}^{2}}{\Delta (a_{2}-a_{1}x)}|_{\omega < 1}}\right)}_{\cal I_{6}}, \tag{53}\end{align*}
View Source
\begin{align*} F_{\gamma _{\rm D_{1}}^{\hat x_{2}}}(x) &= \underbrace {P_{\mathrm{ LoS}}\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{1}}|^{2} < \frac {x\sigma _{\rm D_{1}}^{2}}{\Delta (a_{2}-a_{1}x)}|_{\omega =1}}\right)}_{\cal I_{5}} \\ &\quad +P_{\mathrm{ NLoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{1}}|^{2} < \frac {x\sigma _{\rm D_{1}}^{2}}{\Delta (a_{2}-a_{1}x)}|_{\omega < 1}}\right)}_{\cal I_{6}}, \tag{53}\end{align*}
where \Delta
is presented in (7).
From (14) and (15), we have the CDF of \gamma _{\rm D_{1}}^{\hat x_{1}}
and the CDF of \gamma _{\rm D_{2}}^{\hat x_{2}}
in the case of perfect SIC as \begin{align*} F_{\gamma _{\rm D_{1}}}^{\hat x_{1}}(x) &= P_{\mathrm{ LoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{1}}|^{2} < \frac {x\sigma _{\rm D_{1}}^{2}}{\Delta a_{1}}|{\omega =1}}\right)}_{\cal I_{7}} \\ &\quad +P_{\mathrm{ NLoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{1}}|^{2} < \frac {x\sigma _{\rm D_{1}}^{2}}{\Delta a_{1}}|{\omega < 1}}\right)}_{\cal I_{8}}, \tag{54}\\ F_{\gamma _{\rm D_{2}}^{\hat x_{2}}}(x) &= P_{\mathrm{ LoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{2}}|^{2} < \frac {x\sigma _{\rm D_{2}}^{2}}{\Delta (a_{2}-a_{1}x)}|_{\omega =1}}\right)}_{\cal I_{9}} \\ &\quad +P_{\mathrm{ NLoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{2}}|^{2} < \frac {x\sigma _{\rm D_{2}}^{2}}{\Delta (a_{2}-a_{1}x)}|_{\omega < 1}}\right)}_{\cal I_{10}}. \tag{55}\end{align*}
View Source
\begin{align*} F_{\gamma _{\rm D_{1}}}^{\hat x_{1}}(x) &= P_{\mathrm{ LoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{1}}|^{2} < \frac {x\sigma _{\rm D_{1}}^{2}}{\Delta a_{1}}|{\omega =1}}\right)}_{\cal I_{7}} \\ &\quad +P_{\mathrm{ NLoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{1}}|^{2} < \frac {x\sigma _{\rm D_{1}}^{2}}{\Delta a_{1}}|{\omega < 1}}\right)}_{\cal I_{8}}, \tag{54}\\ F_{\gamma _{\rm D_{2}}^{\hat x_{2}}}(x) &= P_{\mathrm{ LoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{2}}|^{2} < \frac {x\sigma _{\rm D_{2}}^{2}}{\Delta (a_{2}-a_{1}x)}|_{\omega =1}}\right)}_{\cal I_{9}} \\ &\quad +P_{\mathrm{ NLoS}}\underbrace {\Pr \left({|h_{\mathrm{ pu}}|^{2}|h_{\rm ud_{2}}|^{2} < \frac {x\sigma _{\rm D_{2}}^{2}}{\Delta (a_{2}-a_{1}x)}|_{\omega < 1}}\right)}_{\cal I_{10}}. \tag{55}\end{align*}
Thanks to the fundamental of the conditional probability given in [44, Chapter 4], we can rewrite {\mathcal{ I}}_{5}
as \begin{equation*} {\mathcal{ I}}_{5} = \int \nolimits _{0}^{\infty } F_{|h_{\rm ud_{1}}|^{2}}\left({\frac {x\sigma _{\rm D_{1}}^{2}}{y\Delta (a_{2}-a_{1}x)}}\right)f_{|h_{\mathrm{ pu}}|^{2}}(y)dy. \tag{56}\end{equation*}
View Source
\begin{equation*} {\mathcal{ I}}_{5} = \int \nolimits _{0}^{\infty } F_{|h_{\rm ud_{1}}|^{2}}\left({\frac {x\sigma _{\rm D_{1}}^{2}}{y\Delta (a_{2}-a_{1}x)}}\right)f_{|h_{\mathrm{ pu}}|^{2}}(y)dy. \tag{56}\end{equation*}
Substituting (45) and (46) into (56), and then using [45, Eq. (3. 4719)], we obtain the closed-form of {\mathcal{ I}}_{5}
in the case of LoS communication as in (57). Plugging \Omega _{\mathrm{ bu}}
and \Omega _{\rm ud_{1}}
by \omega \Omega _{\mathrm{ bu}}
and \omega \Omega _{\rm ud_{1}}
into (57) we get {\mathcal{ I}}_{6}
as in (58). These expressions are shown at the top of the next page. \begin{align*} {\mathcal{ I}}_{5}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} } \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{1}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} \frac {K+1}{\Omega _{\mathrm{ bu}}}} }\right), \,\,\,\beta _{l,n}=\frac {K^{l}}{l!n!e^{K}}, \tag{57}\\ {\mathcal{ I}}_{6}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\omega \Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\omega \Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)}} \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{1}}^{2}\omega \Omega _{\mathrm{ bu}} }{\Delta \omega \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} \frac {K+1}{\omega \Omega _{\mathrm{ bu}}}} }\right). \tag{58}\end{align*}
View Source
\begin{align*} {\mathcal{ I}}_{5}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} } \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{1}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} \frac {K+1}{\Omega _{\mathrm{ bu}}}} }\right), \,\,\,\beta _{l,n}=\frac {K^{l}}{l!n!e^{K}}, \tag{57}\\ {\mathcal{ I}}_{6}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\omega \Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\omega \Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)}} \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{1}}^{2}\omega \Omega _{\mathrm{ bu}} }{\Delta \omega \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}(a_{2}-a_{1}x)} \frac {K+1}{\omega \Omega _{\mathrm{ bu}}}} }\right). \tag{58}\end{align*}
\begin{align*} {\mathcal{ I}}_{7}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right)^{n}\exp \left({-\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right) \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{1}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} \frac {K+1}{\Omega _{\mathrm{ bu}}}} }\right), \tag{59}\\ {\mathcal{ I}}_{8}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\omega \Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\omega \Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}a_{1}} }\right)^{n}\exp \left({-\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}a_{1}} }\right) \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{1}}^{2} \omega \Omega _{\mathrm{ bu}} }{\Delta \omega \Omega _{\rm ud_{1}}a_{1}} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}a_{1}} \frac {K+1}{\omega \Omega _{\mathrm{ bu}}}} }\right). \tag{60}\end{align*}
View Source
\begin{align*} {\mathcal{ I}}_{7}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right)^{n}\exp \left({-\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right) \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{1}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{1}}a_{1}} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \Omega _{\rm ud_{1}}a_{1}} \frac {K+1}{\Omega _{\mathrm{ bu}}}} }\right), \tag{59}\\ {\mathcal{ I}}_{8}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\omega \Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\omega \Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}a_{1}} }\right)^{n}\exp \left({-\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}a_{1}} }\right) \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{1}}^{2} \omega \Omega _{\mathrm{ bu}} }{\Delta \omega \Omega _{\rm ud_{1}}a_{1}} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{1}}^{2} }{\Delta \omega \Omega _{\rm ud_{1}}a_{1}} \frac {K+1}{\omega \Omega _{\mathrm{ bu}}}} }\right). \tag{60}\end{align*}
\begin{align*} {\mathcal{ I}}_{9}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)}} \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{2}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} \frac {K+1}{\Omega _{\mathrm{ bu}}}} }\right), \tag{61}\\ {\mathcal{ I}}_{10}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\omega \Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\omega \Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \omega \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \omega \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)}} \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{2}}^{2} \omega \Omega _{\mathrm{ bu}} }{\Delta \omega \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \omega \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} \frac {K+1}{\omega \Omega _{\mathrm{ bu}}}} }\right) \tag{62}\end{align*}
View Source
\begin{align*} {\mathcal{ I}}_{9}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)}} \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{2}}^{2}\Omega _{\mathrm{ bu}} }{\Delta \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} \frac {K+1}{\Omega _{\mathrm{ bu}}}} }\right), \tag{61}\\ {\mathcal{ I}}_{10}&=1-\sum _{l=0}^{\infty } \sum _{n=0}^{l}\sum _{j=0}^{\infty }\frac {\beta _{l,n}}{(j!)^{2}}\left({\frac {K(K+1)}{\omega \Omega _{\mathrm{ bu}}} }\right)^{j}\frac {K+1}{\omega \Omega _{\mathrm{ bu}}e^{K}}\left({\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \omega \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} }\right)^{n} e^{-\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \omega \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)}} \\ &\quad \times 2\left({\frac {x\sigma _{\rm D_{2}}^{2} \omega \Omega _{\mathrm{ bu}} }{\Delta \omega \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} }\right)^{\frac {j-n+1}{2}} {\mathcal{ K}}_{j-n+1}\left({2 \sqrt {\frac {(K+1)x\sigma _{\rm D_{2}}^{2} }{\Delta \omega \Omega _{\rm ud_{2}}(a_{2}-a_{1}x)} \frac {K+1}{\omega \Omega _{\mathrm{ bu}}}} }\right) \tag{62}\end{align*}
Similar to calculating for (53), we can derive the CDFs of {\gamma _{\rm D_{1}}}^{\hat x_{1}}
and {\gamma _{\rm D_{2}}^{\hat x_{2}}}
for (54) and (55).