Abstract:
Even though virtual testing of Autonomous Vehicles (AVs) has been well recognized as essential for safety assessment, AV simulators are still undergoing active developmen...Show MoreMetadata
Abstract:
Even though virtual testing of Autonomous Vehicles (AVs) has been well recognized as essential for safety assessment, AV simulators are still undergoing active development. One particular challenge is the problem of including the Sensing and Perception (S&P) subsystem into the virtual simulation loop in an efficient and effective manner. In this article, we define Perception Error Models (PEM), a virtual simulation component that can enable the analysis of the impact of perception errors on AV safety, without the need to model the sensors themselves. We propose a generalized data-driven procedure towards parametric modeling and evaluate it using Apollo, an open-source driving software, and nuScenes, a public AV dataset. Additionally, we implement PEMs in SVL, an open-source vehicle simulator. Furthermore, we demonstrate the usefulness of PEM-based virtual tests, by evaluating camera, LiDAR, and camera-LiDAR setups. Our virtual tests highlight limitations in the current evaluation metrics, and the proposed approach can help study the impact of perception errors on AV safety.
Published in: IEEE Transactions on Intelligent Transportation Systems ( Volume: 25, Issue: 1, January 2024)
Funding Agency:
References is not available for this document.
Select All
1.
Y. Shen et al., "To explain or not to explain: A study on the necessity of explanations for autonomous vehicles", arXiv:2006.11684, 2020.
2.
SAE, J3016_201806, "Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles", 2018.
3.
E. Marti, M. A. de Miguel, F. Garcia and J. Perez, "A review of sensor technologies for perception in automated driving", IEEE Intell. Transp. Syst. Mag., vol. 11, no. 4, pp. 94-108, Winter 2019.
4.
Collison Between Vehicle Controlled by Developmental Automated Driving System and Pedestrian, Washington, DC, USA, 2019.
5.
W. Young, A. Sobhani, M. G. Lenné and M. Sarvi, "Simulation of safety: A review of the state of the art in road safety simulation modelling", Accident Anal. Prevention, vol. 66, pp. 89-103, May 2014.
6.
A. Piazzoni, J. Cherian, M. Slavik and J. Dauwels, "Modeling perception errors towards robust decision making in autonomous vehicles", Proc. 29th Int. Joint Conf. Artif. Intell., pp. 3494-3500, Jul. 2020.
7.
F. Rosique, P. J. Navarro, C. Fernández and A. Padilla, "A systematic review of perception system and simulators for autonomous vehicles research", Sensors, vol. 19, no. 3, pp. 648, Feb. 2019.
8.
S. Shalev-Shwartz, S. Shammah and A. Shashua, "On a formal model of safe and scalable self-driving cars", arXiv:1708.06374, 2017.
9.
S. Feng, Y. Feng, C. Yu, Y. Zhang and H. X. Liu, "Testing scenario library generation for connected and automated vehicles Part I: Methodology", IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1573-1582, Mar. 2021.
10.
A. Piazzoni, J. Cherian, M. Azhar, J. Y. Yap, J. L. W. Shung and R. Vijay, "ViSTA: A framework for virtual scenario-based testing of autonomous vehicles", Proc. IEEE Int. Conf. Artif. Intell. Test. (AITest), pp. 143-150, Aug. 2021.
11.
C. Gómez-Huélamo et al., "Train here drive there: ROS based end-to-end autonomous-driving pipeline validation in CARLA simulator using the NHTSA typology", Multimedia Tools Appl., vol. 81, no. 3, pp. 4213-4240, Jan. 2022.
12.
J. Guo, U. Kurup and M. Shah, "Is it safe to drive? An overview of factors metrics and datasets for driveability assessment in autonomous driving", IEEE Trans. Intell. Transp. Syst., vol. 21, no. 8, pp. 3135-3151, Aug. 2020.
13.
IPG CarMaker, 2022, [online] Available: https://www.ipg-automotive.com/en/products-solutions/software/carmaker/.
14.
Vires VTD, 2022, [online] Available: https://www.vires.mscsoftware.com.
15.
Siemens Simcenter Prescan, 2022, [online] Available: https://www.plm.automation.siemens.com/global/en/products/simcenter/prescan.html.
16.
NVIDIA Drive Sim and Omniverse, 2022, [online] Available: https://www.nvidia.com/en-sg/self-driving-cars/simulation/.
17.
A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez and V. Koltun, "CARLA: An open urban driving simulator", Proc. 1st Annu. Conf. Robot Learn., pp. 1-16, 2017.
18.
G. Rong et al., "LGSVL simulator: A high fidelity simulator for autonomous driving", arXiv:2005.03778, 2020.
19.
A. Cortés, C. Rodríguez, G. Vélez, J. Barandiarán and M. Nieto, "Analysis of classifier training on synthetic data for cross-domain datasets", IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 190-199, Jan. 2022.
20.
D. Talwar, S. Guruswamy, N. Ravipati and M. Eirinaki, "Evaluating validity of synthetic data in perception tasks for autonomous vehicles", Proc. IEEE Int. Conf. Artif. Intell. Test. (AITest), pp. 73-80, Aug. 2020.
21.
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn and A. Zisserman, "The PASCAL visual object classes (VOC) challenge", Int. J. Comput. Vis., vol. 88, no. 2, pp. 303-338, Jun. 2010.
22.
M. Cordts et al., "The cityscapes dataset for semantic urban scene understanding", Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 3213-3223, Jun. 2016.
23.
K. Bernardin and R. Stiefelhagen, "Evaluating multiple object tracking performance: The CLEAR MOT metrics", EURASIP J. Image Video Process., vol. 2008, pp. 1-10, Jan. 2008.
24.
C.-H. Cheng, G. Nãhrenberg, C.-H. Huang, H. Ruess and H. Yasuoka, "Towards dependability metrics for neural networks", Proc. 16th ACM/IEEE Int. Conf. Formal Methods Models Syst. Design, pp. 1-4, Oct. 2018.
25.
M. Lyssenko, C. Gladisch, C. Heinzemann, M. Woehrle and R. Triebel, "From evaluation to verification: Towards task-oriented relevance metrics for pedestrian detection in safety-critical domains", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), pp. 38-45, Jun. 2021.
26.
G. Volk, J. Gamerdinger, A. v. Bernuth and O. Bringmann, "A comprehensive safety metric to evaluate perception in autonomous systems", Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst. (ITSC), pp. 1-8, Sep. 2020.
27.
C.-H. Cheng, A. Knoll and H.-C. Liao, "Safety metrics for semantic segmentation in autonomous driving", Proc. IEEE Int. Conf. Artif. Intell. Test. (AITest), pp. 57-64, Aug. 2021.
28.
H. Arnelid, E. L. Zec and N. Mohammadiha, "Recurrent conditional generative adversarial networks for autonomous driving sensor modelling", Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), pp. 1613-1618, Oct. 2019.
29.
V. Berkhahn, M. Kleiber, J. Langner, C. Timmermann and S. Weber, "Traffic dynamics at intersections subject to random misperception", IEEE Trans. Intell. Transp. Syst., vol. 23, no. 5, pp. 4501-4511, May 2022.
30.
N. Hirsenkorn, T. Hanke, A. Rauch, B. Dehlink, R. Rasshofer and E. Biebl, "Virtual sensor models for real-time applications", Adv. Radio Sci., vol. 14, pp. 31-37, Sep. 2016.