Loading [MathJax]/extensions/MathMenu.js
A UAV-Aided Physical Layer Authentication Based on Channel Characteristics and Geographical Locations | IEEE Journals & Magazine | IEEE Xplore

A UAV-Aided Physical Layer Authentication Based on Channel Characteristics and Geographical Locations


Abstract:

In this article, we present a mobile unmanned aerial vehicle (UAV) aided physical layer authentication (PLA) framework to differentiate between a legitimate transmitter a...Show More

Abstract:

In this article, we present a mobile unmanned aerial vehicle (UAV) aided physical layer authentication (PLA) framework to differentiate between a legitimate transmitter and a malicious adversary based on the physical layer channel characteristics and geographical locations of different transmitters. For a single mobile UAV, we derive new explicit expressions for the probability density function (PDF) of signal-to-noise ratio (SNR) difference, false alarm rate (FAR), and miss detection rate (MDR). Then, we optimize key system parameters including the detection threshold and UAV movement to minimize the MDR subject to a given FAR constraint. Next, we extend the theoretical analysis to consider the double mobile UAVs scenario and derive the PDF of averaged SNR difference, FAR and MDR in closed-form. Monte Carlo simulations verify the accuracy of our derived expressions. Moreover, simulation results demonstrate the effectiveness of our SNR-based solution and highlight the advantages of double UAVs on minimizing the MDR over single UAV.
Published in: IEEE Transactions on Vehicular Technology ( Volume: 73, Issue: 1, January 2024)
Page(s): 1053 - 1064
Date of Publication: 28 August 2023

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Security and reliability are the major considerations for fifth-generation (5G) wireless communications due to the critical demand of protecting against harmful attacks, such as eavesdropping, malicious jamming and spoofing [1]. Unlike eavesdropping or malicious jamming attacks which are launched to overhear or disrupt the legitimate transmissions [2], spoofing attacks which aim to replicate the identity number of a legitimate transmitter to send harmful messages result in a significant attack on the integrity of the communication infrastructure [3]. For example, when legitimate actors report traffic jam positioning information to the server in an intelligent transport system, a malicious spoofer is able to intercept this important information and modify it to falsely generate other locations [4].

Select All
1.
Z. Wei, F. Liu, C. Masouros, N. Su and A. P. Petropulu, "Toward multi-functional 6G wireless networks: Integrating sensing communication and security", IEEE Commun. Mag., vol. 60, no. 4, pp. 65-71, Apr. 2022.
2.
N. Yang, P. L. Yeoh, M. Elkashlan, R. Schober and I. B. Collings, "Transmit antenna selection for security enhancement in MIMO wiretap channels", IEEE Trans. Commun., vol. 61, no. 1, pp. 144-154, Jan. 2013.
3.
J. K. Tugnait, "Pilot spoofing attack detection and countermeasure", IEEE Trans. Commun., vol. 66, no. 5, pp. 2093-2106, May 2018.
4.
D. Orlando, S. Bartoletti, I. Palamà, G. Bianchi and N. B. Melazzi, "Innovative attack detection solutions for wireless networks with application to location security", IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 205-219, Jan. 2023.
5.
N. Xie and S. Zhang, "Blind authentication at the physical layer under time-varying fading channels", IEEE J. Sel. Areas Commun., vol. 36, no. 7, pp. 1465-1479, Jul. 2018.
6.
L. Xiao, T. Chen, G. Han, W. Zhuang and L. Sun, "Game theoretic study on channel-based authentication in MIMO systems", IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7474-7484, Aug. 2017.
7.
L. Xiao, X. Wan and Z. Han, "PHY-Layer authentication with multiple landmarks with reduced overhead", IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1676-1687, Mar. 2018.
8.
M. Abdrabou and T. A. Gulliver, "Adaptive physical layer authentication using machine learning with antenna diversity", IEEE Trans. Commun., vol. 70, no. 10, pp. 6604-6614, Oct. 2022.
9.
Y. Wang, W. Zhang, X. Wang, W. Guo, M. K. Khan and P. Fan, "Improving the security of LTE-R for high-speed railway: From the access authentication view", IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 1332-1346, Feb. 2022.
10.
H. Forssell and R. Thobaben, "Worst-case detection performance for distributed SIMO physical layer authentication", IEEE Trans. Commun., vol. 70, no. 1, pp. 485-499, Jan. 2022.
11.
W. Hou, X. Wang, J.-Y. Chouinard and A. Refaey, "Physical layer authentication for mobile systems with time-varying carrier frequency offsets", IEEE Trans. Commun., vol. 62, no. 5, pp. 1658-1667, May 2014.
12.
Y. Chen, J. Yang, W. Trappe and R. P. Martin, "Detecting and localizing identity-based attacks in wireless and sensor networks", IEEE Trans. Veh. Technol., vol. 59, no. 5, pp. 2418-2434, Jun. 2010.
13.
X. Lu, J. Lei, Y. Shi and W. Li, "Improved physical layer authentication scheme based on wireless channel phase", IEEE Wireless Commun. Lett., vol. 11, no. 1, pp. 198-202, Jan. 2022.
14.
N. Xie, J. Chen and L. Huang, "Physical-layer authentication using multiple channel-based features", IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 2356-2366, 2021.
15.
B. Shang, L. Liu, J. Ma and P. Fan, "Unmanned aerial vehicle meets vehicle-to-everything in secure communications", IEEE Commun. Mag., vol. 57, no. 10, pp. 98-103, Oct. 2019.
16.
Y. Zhou et al., "Improving physical layer security via a UAV friendly jammer for unknown eavesdropper location", IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11280-11284, Nov. 2018.
17.
Y. Zhou et al., "Caching and UAV friendly jamming for secure communications with active eavesdropping attacks", IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 11251-11256, Oct. 2022.
18.
Q. Wu, W. Mei and R. Zhang, "Safeguarding wireless network with UAVs: A. physical layer security perspective", IEEE Wireless Commun., vol. 26, no. 5, pp. 12-18, Oct. 2019.
19.
K. W. Huang and H. M. Wang, "Combating the control signal spoofing attack in UAV systems", IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 7769-7773, Aug. 2018.
20.
Y. Zhou, P. L. Yeoh, K. J. Kim, Z. Ma, Y. Li and B. Vucetic, "Game theoretic physical layer authentication for spoofing detection in UAV communications", IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6750-6755, Jun. 2022.
21.
S. J. Maeng, Y. Yapıcı, İ. Güvenç, A. Bhuyan and H. Dai, "Precoder design for physical-layer security and authentication in massive MIMO UAV communications", IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 2949-2964, Mar. 2022.
22.
S. Yang, Y. Deng, X. Tang, Y. Ding and J. Zhou, "Energy efficiency optimization for UAV-assisted backscatter communications", IEEE Commun. Lett., vol. 23, no. 11, pp. 2041-2045, Nov. 2019.
23.
Y. Zeng and R. Zhang, "Energy-efficient UAV communication with trajectory optimization", IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3747-3760, Jun. 2017.
24.
X. Zhou, Q. Wu, S. Yan, F. Shu and J. Li, "UAV-Enabled secure communications: Joint trajectory and transmit power optimization", IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 4069-4073, Apr. 2019.
25.
Y. Xu, T. Zhang, D. Yang, Y. Liu and M. Tao, "Joint resource and trajectory optimization for security in UAV-assisted MEC systems", IEEE Trans. Commun., vol. 69, no. 1, pp. 573-588, Jan. 2021.
26.
A. V. Savkin, H. Huang and W. Ni, "Securing UAV communication in the presence of stationary or mobile eavesdroppers via online 3D trajectory planning", IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1211-1215, Aug. 2020.
27.
Y. Zhou et al., "Secure Communications for UAV-enabled mobile edge computing systems", IEEE Trans. Commun., vol. 68, no. 1, pp. 376-388, Jan. 2020.
28.
A. Al-Hourani, S. Kandeepan and A. Jamalipour, "Modeling air-to-ground path loss for low altitude platforms in urban environments", Proc. IEEE Glob. Commun. Conf., pp. 2898-2904, 2014.
Contact IEEE to Subscribe

References

References is not available for this document.