Abstract:
Diffusion probabilistic models (DPM) have been widely adopted in image-to-image translation to generate high-quality images. Prior attempts at applying the DPM to image s...Show MoreNotes: This DOI was registered to an article that was not presented by the author(s) at this conference. As per section 8.2.1.B.13 of IEEE's "Publication Services and Products Board Operations Manual," IEEE has chosen to exclude this article from distribution. We regret any inconvenience.
Metadata
Abstract:
Diffusion probabilistic models (DPM) have been widely adopted in image-to-image translation to generate high-quality images. Prior attempts at applying the DPM to image super-resolution (SR) have shown that iteratively refining a pure Gaussian noise with a conditional image using a U-Net trained on denoising at various-level noises can help obtain a satisfied high-resolution image for the low-resolution one. To further improve the performance and simplify current DPM-based super-resolution methods, we propose a simple but non-trivial DPM-based super-resolution post-process framework, i.e., cDPMSR. After applying a pre-trained SR model on the to-be-test LR image to provide the conditional input, we adapt the standard DPM to conduct conditional image generation and perform super-resolution through a deterministic iterative denoising process. Our method surpasses prior attempts on both qualitative and quantitative results and can generate more photo-realistic counterparts for the low-resolution images with various benchmark datasets including Set5, Set14, Urban100, BSD100, and Manga109. Code will be published after accepted.
Notes: This DOI was registered to an article that was not presented by the author(s) at this conference. As per section 8.2.1.B.13 of IEEE's "Publication Services and Products Board Operations Manual," IEEE has chosen to exclude this article from distribution. We regret any inconvenience.
Date of Conference: 08-11 October 2023
Date Added to IEEE Xplore: 11 September 2023
ISBN Information: