Loading [a11y]/accessibility-menu.js
The Wide Multiplexed Period Three-Phase Multiplexing Arm Modular Multilevel Converter | IEEE Journals & Magazine | IEEE Xplore

The Wide Multiplexed Period Three-Phase Multiplexing Arm Modular Multilevel Converter


Abstract:

Three-phase multiplexing arm modular multilevel converter (TPMA-MMC) possesses cost-efficiency advantage by employing a pair of multiplexing arms. However, the narrow mul...Show More

Abstract:

Three-phase multiplexing arm modular multilevel converter (TPMA-MMC) possesses cost-efficiency advantage by employing a pair of multiplexing arms. However, the narrow multiplexing arm energy regulation period results in the limited modulation range [0.82, 1]. This article proposes a wide multiplexed period operation principle with the multiplexing arm energy regulation period being extended to one-fundamental period, and with which, it realizes to expand the modulation range to [0, 1]. Besides, based on it, the existing “overlap” period could also contribute to realize the multiplexing arm energy balance in one-third fundamental period. Therefore, the analysis of this new principle indicates that TPMA-MMC demonstrates some improved advantages. Compared to MMC, it reduces by 21.8% in submodule (SM) count, 28.9% in operation loss, and 39.9% in energy storage, which could result in lower construction cost, footprint, and higher efficiency and power density, and the proposed principle also permits TPMA-MMC to possess higher efficiency than that with the narrow range principle. Finally, the proposed wide multiplexed period operation principle and control scheme are verified by simulation and scale-down prototype experimental results.
Page(s): 4929 - 4944
Date of Publication: 20 July 2023

ISSN Information:

Funding Agency:

References is not available for this document.

Select All
1.
A. Nami, J. Liang, F. Dijkhuizen and G. D. Demetriades, "Modular multilevel converters for HVDC applications: Review on converter cells and functionalities", IEEE Trans. Power Electron., vol. 30, no. 1, pp. 18-36, Jan. 2015.
2.
T. H. Nguyen, K. A. Hosani, M. S. E. Moursi and F. Blaabjerg, "An overview of modular multilevel converters in HVDC transmission systems with STATCOM operation during pole-to-pole DC short circuits", IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4137-4160, May 2019.
3.
A. Dekka, B. Wu, R. L. Fuentes, M. Perez and N. R. Zargari, "Evolution of topologies modeling control schemes and applications of modular multilevel converters", IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 4, pp. 1631-1656, Dec. 2017.
4.
Q. Xiao et al., "Modulated model predictive control for multilevel cascaded H-bridge converter-based static synchronous compensator", IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 1091-1102, Feb. 2022.
5.
T. Nakanishi and J.-I. Itoh, "High power density design for a modular multilevel converter with an H-bridge cell based on a volume evaluation of each component", IEEE Trans. Power Electron., vol. 33, no. 3, pp. 1967-1984, Mar. 2018.
6.
E. Polytechnique F. de Lausanne and M. Basić, "Hybrid modular multilevel converter for variable DC link voltage operation", CPSS Trans. Power Electron. Appl., vol. 6, no. 2, pp. 178-190, Jun. 2021.
7.
M. Basic and D. Dujic, "Hybrid modular multilevel converter for variable DC link voltage operation", CPSS Trans. Power Electron. Appl., vol. 6, no. 2, pp. 178-190, Jun. 2021.
8.
P. Hu, R. Teodorescu and J. M. Guerrero, "Negative-sequence second-order circulating current injection for hybrid MMC under over-modulation conditions", IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 3, pp. 2508-2519, Sep. 2020.
9.
S. Kolluri, N. B. Y. Gorla and S. K. Panda, "Capacitor voltage ripple suppression in a modular multilevel converter using frequency-adaptive spatial repetitive-based circulating current controller", IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9839-9849, Sep. 2020.
10.
J. Yu and C. Xia, "Capacitor voltage fluctuation suppression method based on improved MMC topology for variable-frequency drive application", CPSS Trans. Power Electron. Appl., vol. 7, no. 2, pp. 150-159, Jun. 2022.
11.
B. He, W. Chen, X. Li, L. Shu, Z. Zou and F. Liu, "Unified frequency-domain small-signal stability analysis for interconnected converter systems", IEEE J. Emerg. Sel. Topics Power Electron., vol. 11, no. 1, pp. 532-544, Feb. 2023.
12.
L. Yang, Y. Li, Z. Li, P. Wang, S. Xu and R. Gou, "Loss optimization of MMC by second-order harmonic circulating current injection", IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5739-5753, Jul. 2018.
13.
K. Wang, Y. Li, Z. Zheng and L. Xu, "Voltage balancing and fluctuation-suppression methods of floating capacitors in a new modular multilevel converter", IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1943-1954, May 2013.
14.
B. Li, Y. Zhang, G. Wang, W. Sun, D. Xu and W. Wang, "A modified modular multilevel converter with reduced capacitor voltage fluctuation", IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6108-6119, Oct. 2015.
15.
M. Huang, J. Zou, X. Ma, Y. Li and M. Han, "Modified modular multilevel converter to reduce submodule capacitor voltage ripples without common-mode voltage injected", IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2236-2246, Mar. 2019.
16.
R. Li and L. Xu, "A unidirectional hybrid HVDC transmission system based on diode rectifier and full-bridge MMC", IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 6974-6984, Dec. 2021.
17.
T. Yin, L. Lin, C. Xu, D. Zhu and K. Jing, "A hybrid modular multilevel converter comprising SiC MOSFET and Si IGBT with its specialized modulation and voltage balancing scheme", IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 11272-11282, Nov. 2022.
18.
Y. Xue, Z. Xu and Q. Tu, "Modulation and control for a new hybrid cascaded multilevel converter with DC blocking capability", IEEE Trans. Power Del., vol. 27, no. 4, pp. 2227-2237, Oct. 2012.
19.
M. M. C. Merlin et al., "The alternate arm converter: A new hybrid multilevel converter with DC-fault blocking capability", IEEE Trans. Power Del., vol. 29, no. 1, pp. 310-317, Feb. 2014.
20.
M. M. C. Merlin, T. C. Green, P. D. Mitcheson, F. J. Moreno, K. J. Dyke and D. R. Trainer, "Cell capacitor sizing in modular multilevel converters and hybrid topologies", Proc. 16th Eur. Conf. Power Electron. Appl., pp. 1-10, Aug. 2014.
21.
E. M. Farr, R. Feldman, J. C. Clare, A. J. Watson and P. W. Wheeler, "The alternate arm converter (AAC)—‘Short-overlap’ mode operation—Analysis and design parameter selection", IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5641-5659, Jul. 2018.
22.
P. Vermeersch, F. Gruson, M. M. C. Merlin, X. Guillaud and P. Egrot, "Full energy management of EO-AAC: Toward a dynamic equivalence with MMC", IEEE Trans. Power Del., vol. 36, no. 6, pp. 3882-3892, Dec. 2021.
23.
M. M. C. Merlin et al., "The extended overlap alternate arm converter: A voltage-source converter with DC fault ride-through capability and a compact design", IEEE Trans. Power Electron., vol. 33, no. 5, pp. 3898-3910, May 2018.
24.
H. Yang, S. Fan, Y. Dong, H. Yang, W. Li and X. He, "Arm phase-shift conducting modulation for alternate arm multilevel converter with half-bridge submodules", IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5223-5235, May 2021.
25.
S. Fan et al., "A cost-effective and DC-fault tolerant alternate arm converter with wide range voltage adaptability", IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 6, pp. 6673-6686, Dec. 2022.
26.
J. Liu, D. Dong and D. Zhang, "A hybrid modular multilevel converter family with higher power density and efficiency", IEEE Trans. Power Electron., vol. 36, no. 8, pp. 9001-9014, Aug. 2021.
27.
J. Liu, D. Zhang and D. Dong, "Modeling and control method for a three-level hybrid modular multilevel converter", IEEE Trans. Power Electron., vol. 37, no. 3, pp. 2870-2884, Mar. 2022.
28.
G. P. Adam, F. Alsokhiry, I. Abdelsalam, J. Fletcher, L. Xu and Y. Al-Turki, "Hybrid converter topologies for DC transmission systems", IET Power Electron., vol. 12, no. 3, pp. 607-619, Mar. 2019.
29.
R. Feldman et al., "A hybrid modular multilevel voltage source converter for HVDC power transission", IEEE Trans. Ind. Appl., vol. 49, no. 4, pp. 1577-1588, Jul. 2013.
30.
M. B. Ghat, S. K. Patro and A. Shukla, "The hybrid-legs bridge converter: A flexible and compact VSC-HVDC topology", IEEE Trans. Power Electron., vol. 36, no. 3, pp. 2808-2822, Mar. 2021.
Contact IEEE to Subscribe

References

References is not available for this document.