Loading web-font TeX/Math/Italic
GPF-BG: A Hierarchical Vision-Based Planning Framework for Safe Quadrupedal Navigation | IEEE Conference Publication | IEEE Xplore

GPF-BG: A Hierarchical Vision-Based Planning Framework for Safe Quadrupedal Navigation


Abstract:

Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating...Show More

Abstract:

Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called Bézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments.
Date of Conference: 29 May 2023 - 02 June 2023
Date Added to IEEE Xplore: 04 July 2023
ISBN Information:
Conference Location: London, United Kingdom

Funding Agency:

References is not available for this document.

I. Introduction

Quadrupedal robots have demonstrated superior terrain traversability compared to traditional wheeled robots [1]–[3]. Significant progress has been made during the past few years to improve the robustness and agility of legged locomotion control [4]-[10], which enables the incorporation of exteroceptive sensors for autonomous navigation (e.g. Fig. 1). Taking into account legged robot morphology, prior navigation works have been mostly focused on rough terrain traversability [2], [11]–[15], multi-modal planning [2], [16]–[19], and multi-robot exploration [20], [21]. However, navigation safety and obstacle avoidance have not been formally analyzed, and the tested scenarios are limited to less dense environments. Safe navigation through unknown or partially unknown environments for quadrupeds is critical to the field deployment of legged robots yet remains under explored.

Select All
1.
J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun and M. Hutter, "Learning quadrupedal locomotion over challenging terrain", Science robotics, vol. 5, no. 47, pp. eabc5986, 2020.
2.
D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, et al., "Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot", 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2464-2470, 2020.
3.
M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry and S. Schaal, "Learning planning and control for quadruped locomotion over challenging terrain", The International Journal of Robotics Research, vol. 30, no. 2, pp. 236-258, 2011.
4.
G. Bledt, P. M. Wensing and S. Kim, "Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the mit cheetah", 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4102-4109, 2017.
5.
J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt and S. Kim, "Dynamic locomotion in the mit cheetah 3 through convex model-predictive control", 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 1-9, 2018.
6.
C. D. Bellicoso, F. Jenelten, C. Gehring and M. Hutter, "Dynamic locomotion through online nonlinear motion optimization for quadrupedal robots", IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2261-2268, 2018.
7.
D. Kim, J. Di Carlo, B. Katz, G. Bledt and S. Kim, "Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control", arXiv preprint, 2019.
8.
Y. Ding, A. Pandala, C. Li, Y.-H. Shin and H.-W. Park, "Representation-free model predictive control for dynamic motions in quadrupeds", IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1154-1171, 2021.
9.
Z. Zhou, B. Wingo, N. Boyd, S. Hutchinson and Y. Zhao, "Momentum-aware trajectory optimization and control for agile quadrupedal locomotion", IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7755-7762, 2022.
10.
H. Zhu, D. Wang, N. Boyd, Z. Zhou, L. Ruan, A. Zhang, et al., "Terrain-perception-free quadrupedal spinning locomotion on versatile terrains: Modeling analysis and experimental validation", Frontiers in Robotics and AI, vol. 8, 2021.
11.
D. Wooden, M. Malchano, K. Blankespoor, A. Howardy, A. A. Rizzi and M. Raibert, "Autonomous navigation for bigdog", 2010 IEEE International Conference on Robotics and Automation, pp. 4736-4741, 2010.
12.
A. Chilian and H. Hirschmüller, "Stereo camera based navigation of mobile robots on rough terrain", 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4571-4576, 2009.
13.
M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart and M. Hutter, "Navigation planning for legged robots in challenging terrain", 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1184-1189, 2016.
14.
M. Brandao, O. B. Aladag and I. Havoutis, "Gaitmesh: controller-aware navigation meshes for long-range legged locomotion planning in multi-layered environments", IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3596-3603, 2020.
15.
T. Dudzik, M. Chignoli, G. Bledt, B. Lim, A. Miller, D. Kim, et al., "Robust autonomous navigation of a small-scale quadruped robot in real-world environments", 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3664-3671, 2020.
16.
P. Fernbach, S. Tonneau, A. Del Prete and M. Taïx, "A kinodynamic steering-method for legged multi-contact locomotion", 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3701-3707, 2017.
17.
J. Norby and A. M. Johnson, "Fast global motion planning for dynamic legged robots", 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3829-3836, 2020.
18.
M. Chignoli, S. Morozov and S. Kim, "Rapid and reliable trajectory planning involving omnidirectional jumping of quadruped robots", arXiv preprint, 2021.
19.
S. Gilroy, D. Lau, L. Yang, E. Izaguirre, K. Biermayer, A. Xiao, M. Sun, A. Agrawal, J. Zeng, Z. Li et al., "Autonomous navigation for quadrupedal robots with optimized jumping through constrained obstacles", 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), pp. 2132-2139, 2021.
20.
M. Kulkarni, M. Dharmadhikari, M. Tranzatto, S. Zimmermann, V. Reijgwart, P. De Petris, H. Nguyen, N. Khedekar, C. Papachristos, L. Ott et al., "Autonomous teamed exploration of subterranean environments using legged and aerial robots", 2022 International Conference on Robotics and Automation (ICRA), pp. 3306-3313, 2022.
21.
Z. Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo and Y. Zhao, "Reactive task allocation and planning for quadrupedal and wheeled robot teaming", 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), pp. 2110-2117, 2022.
22.
R. Xu, S. Feng and P. A. Vela, "Potential gap: A gap-informed reactive policy for safe hierarchical navigation", IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8325-8332, 2021.
23.
S. Feng, F. Lyu, J. Ha Hwang and P. A. Vela, "Ego-centric stereo navigation using stixel world", 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13201-13207, 2021.
24.
J. S. Smith, S. Feng, F. Lyu and P. A. Vela, Real-Time Egocentric Navigation Using 3D Sensing, Cham: Springer International Publishing, pp. 431-484, 2020.
25.
V. Dimitrov et al., "Hierarchical navigation architecture and robotic arm controller for a sample return rover", T-SMC, pp. 4476-4481, Oct 2013.
26.
M. Teiner, I. Rojas, K. Goser and O. Valenzuela, "A hierarchical fuzzy steering controller for mobile robots", Int. Workshop on Scientific Use of Submarine Cables and Related Technologies, pp. 7-12, 2003.
27.
J. Guldner, V. I. Utkin and R. Bauer, "Mobile robots in complex environments: a three-layered hierarchical path control system", IROS, vol. 3, pp. 1891-1898, Sep. 1994.
28.
T. Y. Teck, M. Chitre and P. Vadakkepat, "Hierarchical agent-based command and control system for autonomous underwater vehicles", ICoIAS, pp. 1-6, June 2010.
29.
J. Warnke, A. Shamsah, Y. Li and Y. Zhao, "Towards safe locomotion navigation in partially observable environments with uneven terrain", 2020 59th IEEE Conference on Decision and Control (CDC), pp. 958-965, 2020.
30.
Y. Zhao, Y. Li, L. Sentis, U. Topcu and J. Liu, "Reactive task and motion planning for robust whole-body dynamic locomotion in constrained environments", The International Journal of Robotics Research, vol. 41, no. 8, pp. 812-847, 2022.

Contact IEEE to Subscribe

References

References is not available for this document.