Loading [MathJax]/extensions/MathZoom.js
3D Brain Tumor Segmentation with U-Net Network using Public Kaggle Dataset | IEEE Conference Publication | IEEE Xplore

3D Brain Tumor Segmentation with U-Net Network using Public Kaggle Dataset


Abstract:

This paper aims to implement and experiment with a deep learning model, U-Net, for effectively segmenting the 3D-brain tumor images. It helps to identify glioblastoma in ...Show More

Abstract:

This paper aims to implement and experiment with a deep learning model, U-Net, for effectively segmenting the 3D-brain tumor images. It helps to identify glioblastoma in MRI brain images. Manual investigation of MRI images does not provide exact information about the abnormalities in the images. Thus, various existing methods have proposed medical image processing methods, which include custom methods, traditional image segmentation methods, and classifiers. However, those methods did not provide high accuracy in prediction with lesser complexity. Hence, this paper has aimed to implement U-Net architecture for segmenting and classifying MRI brain images. It helps in obtaining efficient performance regarding brain tumor segmentation, along with detailing the stage in which the diseased person currently has after segmentation. The proposed methodology has been experimented within MATLAB software, and the efficiency has been verified. From the experiment , it is identified that the proposed model provides better performance of 98% Accuracy, 95% Precision, and 96.4% Recall. Furthermore, the size of the tumor was successfully able to be intimated by outlining it, and the stage of the Brain Tumor (Gliomas) was also intimated with the warning message to any healthcare professional. Finally, the comparative study of existing methods using Morphological operations and our proposed 3D brain tumor segmentation methodology was made and presented.
Date of Conference: 02-04 February 2023
Date Added to IEEE Xplore: 27 March 2023
ISBN Information:
Conference Location: Coimbatore, India
References is not available for this document.

I. Introduction

A tumor is the grouping of aberrant cells in the brain that shape a cluster [1]. The hard skeletal form called the skull protects our brain. There are more chances for issues like variations or disturbances in this skull area. When tumors start to grow inside the brain, pressure may develop in the skull area. In some cases, this can result in permanent brain damage and even death [3]. Malignant (cancerous) and noncancerous (non-cancerous) brain tumors are also possible (benign) in the human brain [2].

Select All
1.
M. L. Bondy et al., "Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium", vol. 113, no. S7, pp. 1953-1968, 2008.
2.
R. L. Achey, H. Gittleman, J. Schroer, V. Khanna, C. Kruchko and J. S. J. N.-o. Barnholtz-Sloan, "Nonmalignant and malignant meningioma incidence and survival in the elderly 2005–2015 using the Central Brain Tumor Registry of the United States", vol. 21, no. 3, pp. 380-391, 2019.
3.
A. Goriely et al., "Mechanics of the brain: perspectives challenges and opportunities", vol. 14, no. 5, pp. 931-965, 2015.
4.
X. Jiang, R. Zhang and S. J. P. P. Nie, "Image segmentation based on level set method", vol. 33, pp. 840-845, 2012.
5.
M. Nazir, S. Shakil and K. J. C. M. I. Khurshid, "Role of deep learning in brain tumor detection and classification (2015 to 2020): A review", vol. 91, pp. 101940, 2021.
6.
S. Bakas et al., "Identifying the best machine learning algorithms for brain tumor segmentation progression assessment and overall survival prediction in the BRATS challenge", 2018.
7.
A. K. Jain, J. Mao and K. M. J. C. Mohiuddin, "Artificial neural networks: A tutorial", vol. 29, no. 3, pp. 31-44, 1996.
8.
M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. J. I. I. S. Scholkopf, "Support vector machines", vol. 13, no. 4, pp. 18-28, 1998.
9.
S. Indolia, A. K. Goswami, S. P. Mishra and P. J. P. c. s. Asopa, "Conceptual understanding of convolutional neural network-a deep learning approach", vol. 132, pp. 679-688, 2018.
10.
S. A. A. Ismael, A. Mohammed and H. J. A. i. i. m. Hefny, "An enhanced deep learning approach for brain cancer MRI images classification using residual networks", vol. 102, pp. 101779, 2020.
11.
M. I. Sharif, J. P. Li, M. A. Khan and M. A. J. P. R. L. Saleem, "Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images", vol. 129, pp. 181-189, 2020.
12.
N. Sravanthi, N. Swetha, P. R. Devi, S. Rachana, S. Gothane and N. J. I. J. S. R. C. S. E. I. T. Sateesh, "Brain tumor detection using image processing", vol. 7, pp. 348-352, 2021.
13.
L. Sun, S. Zhang, H. Chen and L. J. F. i. n. Luo, "Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning", vol. 13, pp. 810, 2019.
14.
G. Latif, J. Alghazo, F. N. Sibai, D. A. Iskandar and A. H. J. C. m. i. Khan, "Recent advancements in Fuzzy C-means based techniques for brain MRI Segmentation", vol. 17, no. 8, pp. 917-930, 2021.
15.
A. Hamzenejad, S. J. Ghoushchi and V. J. B. R. I. Baradaran, "Clustering of brain tumor based on analysis of mri images using robust principal component analysis (robpca) algorithm", vol. 2021, 2021.
16.
R. Pitchai, P. Supraja, A. H. Victoria and M. J. N. P. L. Madhavi, "Brain tumor segmentation using deep learning and fuzzy k-means clustering for magnetic resonance images", vol. 53, no. 4, pp. 2519-2532, 2021.
17.
M. K. Islam, M. S. Ali, M. S. Miah, M. M. Rahman, M. S. Alam and M. A. J. M. L. w. A. Hossain, "Brain tumor detection in MR image using superpixels principal component analysis and template based K-means clustering algorithm", vol. 5, pp. 100044, 2021.
18.
E. S. Biratu, F. Schwenker, T. G. Debelee, S. R. Kebede, W. G. Negera and H. T. J. J. o. I. Molla, "Enhanced region growing for brain tumor MR image segmentation", vol. 7, no. 2, pp. 22, 2021.
19.
E. Irmak, "Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework", J Iranian Journal of Science Technology Transactions of Electrical Engineering, vol. 45, no. 3, pp. 1015-1036, 2021.
20.
S. Chatterjee, F. A. Nizamani, A. Nürnberger and O. J. S. R. Speck, "Classification of brain tumours in MR images using deep spatiospatial models", vol. 12, no. 1, pp. 1-11, 2022.
21.
J. Amin, M. Sharif, A. Haldorai, M. Yasmin and R. S. J. C. Nayak, "Brain tumor detection and classification using machine learning: a comprehensive survey", pp. 1-23, 2021.
22.
R. Dubey, M. Hanmandlu, S. Gupta and S. J. I. J. o. S. Gupta, "Region growing for MRI brain tumor volume analysis RB Dubey1 M. Hanmandlu2 SK Gupta3 and SK Gupta4", vol. 2, no. 9, 2009.
23.
T. Kalaiselvi and P. J. I. j. o. i. s. Nagaraja, "A rapid automatic brain tumor detection method for MRI images using modified minimum error thresholding technique", vol. 1, no. 25, pp. 77-85, 2015.
24.
J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Springer Science & Business Media, 2013.
25.
K. Somasundaram and T. Kalaiselvi, "A comparative study of segmentation techniques used for MR brain images", The International Conference on Image Processing Computer Vision and Pattern Recognition–IPCV, vol. 9, pp. 597-603, 2009.
26.
N. Moon, E. Bullitt, K. v. Leemput and G. Gerig, "Automatic brain and tumor segmentation", International conference on medical image computing and computer-assisted intervention, pp. 372-379, 2002.
27.
J. Liu, J. K. Udupa, D. Odhner, D. Hackney and G. J. C. M. I. Moonis, "A system for brain tumor volume estimation via MR imaging and fuzzy connectedness", vol. 29, no. 1, pp. 21-34, 2005.
28.
Y. Lu, T. Jiang and Y. J. N. Zang, "Region growing method for the analysis of functional MRI data", vol. 20, no. 1, pp. 455-465, 2003.
29.
Y. Salman, M. Assal, A. Badawi, S. Alian and M. E.-M. El-Bayome, "Validation techniques for quantitative brain tumors measurements", 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 7048-7051, 2006.
30.
Y. Yang, X. Yan, C. Zheng and P. Lin, "A novel statistical method for segmentation of brain MRI", 2004 International Conference on Communications Circuits and Systems (IEEE Cat. No. 04EX914), vol. 2, pp. 946-949, 2004.

Contact IEEE to Subscribe

References

References is not available for this document.