Loading [MathJax]/extensions/MathZoom.js
Simpler is better: Multilevel Abstraction with Graph Convolutional Recurrent Neural Network Cells for Traffic Prediction | IEEE Conference Publication | IEEE Xplore

Simpler is better: Multilevel Abstraction with Graph Convolutional Recurrent Neural Network Cells for Traffic Prediction


Abstract:

In recent years, graph neural networks (GNNs) combined with variants of recurrent neural networks (RNNs) have reached state-of-the-art performance in spatiotemporal forec...Show More

Abstract:

In recent years, graph neural networks (GNNs) combined with variants of recurrent neural networks (RNNs) have reached state-of-the-art performance in spatiotemporal forecasting tasks. This is particularly the case for traffic forecasting, where GNN models use the graph structure of road networks to account for spatial correlation between links and nodes. Recent solutions are either based on complex graph operations or avoiding predefined graphs. This paper proposes a new sequence-to-sequence architecture to extract the spatiotemporal correlation at multiple levels of abstraction using GNN-RNN cells with sparse architecture to decrease training time compared to more complex designs. Encoding the same input sequence through multiple encoders, with an incremental increase in encoder layers, enables the network to learn general and detailed information through multilevel abstraction. We further present a new benchmark dataset of street-level segment traffic data from Montreal, Canada. Unlike highways, urban road segments are cyclic and characterized by complicated spatial dependencies. Experimental results on the METR-LA benchmark highway and our MSLTD street-level segment datasets demonstrate that our model improves performance by more than 7% for one-hour prediction compared to the baseline methods while reducing computing resource requirements by more than half compared to other competing methods.
Date of Conference: 04-07 December 2022
Date Added to IEEE Xplore: 30 January 2023
ISBN Information:
Conference Location: Singapore, Singapore

I. Introduction

Spatiotemporal forecasting is an essential tool for understanding variations in space-time data and ultimately helps inform resource allocation, risk management, and policy-making decisions. It has long been a popular field of research in machine learning. Even though many influential machine learning (ML) approaches have been proposed in this field, there is still a considerable gap between the state-of-the-art and accurate predictions, particularly when it comes to traffic forecasting.

Contact IEEE to Subscribe

References

References is not available for this document.