Loading [MathJax]/extensions/MathMenu.js
Limin Wang - IEEE Xplore Author Profile

Showing 1-4 of 4 results

Filter Results

Show

Results

Being able to map the activities of others into one's own point of view is a fundamental human skill even from a very early age. Taking a step toward understanding this human ability, we introduce EgoExoLearn, a large-scale dataset that emulates the human demonstration following process, in which individuals record egocentric videos as they execute tasks guided by exocentric-view demonstration vid...Show More
Multi-object tracking (MOT) in sports scenes plays a critical role in gathering players statistics, supporting further applications, such as automatic tactical analysis. Yet existing MOT benchmarks cast little attention on this domain. In this work, we present a new large-scale multi-object tracking dataset in multiple sports scenes, coined as SportsMOT, where all players on the court are supposed...Show More

The First Visual Object Tracking Segmentation VOTS2023 Challenge Results

Matej Kristan;Jiří Matas;Martin Danelljan;Michael Felsberg;Hyung Jin Chang;Luka Čehovin Zajc;Alan Lukežič;Ondrej Drbohlav;Zhongqun Zhang;Khanh-Tung Tran;Xuan-Son Vu;Johanna Björklund;Christoph Mayer;Yushan Zhang;Lei Ke;Jie Zhao;Gustavo Fernández;Noor Al-Shakarji;Dong An;Michael Arens;Stefan Becker;Goutam Bhat;Sebastian Bullinger;Antoni B. Chan;Shijie Chang;Hanyuan Chen;Xin Chen;Yan Chen;Zhenyu Chen;Yangming Cheng;Yutao Cui;Chunyuan Deng;Jiahua Dong;Matteo Dunnhofer;Wei Feng;Jianlong Fu;Jie Gao;Ruize Han;Zeqi Hao;Jun-Yan He;Keji He;Zhenyu He;Xiantao Hu;Kaer Huang;Yuqing Huang;Yi Jiang;Ben Kang;Jin-Peng Lan;Hyungjun Lee;Chenyang Li;Jiahao Li;Ning Li;Wangkai Li;Xiaodi Li;Xin Li;Pengyu Liu;Yue Liu;Huchuan Lu;Bin Luo;Ping Luo;Yinchao Ma;Deshui Miao;Christian Micheloni;Kannappan Palaniappan;Hancheol Park;Matthieu Paul;HouWen Peng;Zekun Qian;Gani Rahmon;Norbert Scherer-Negenborn;Pengcheng Shao;Wooksu Shin;Elham Soltani Kazemi;Tianhui Song;Rainer Stiefelhagen;Rui Sun;Chuanming Tang;Zhangyong Tang;Imad Eddine Toubal;Jack Valmadre;Joost van de Weijer;Luc Van Gool;Jash Vira;Stèphane Vujasinović;Cheng Wan;Jia Wan;Dong Wang;Fei Wang;Feifan Wang;He Wang;Limin Wang;Song Wang;Yaowei Wang;Zhepeng Wang;Gangshan Wu;Jiannan Wu;Qiangqiang Wu;Xiaojun Wu;Anqi Xiao;Jinxia Xie;Chenlong Xu;Min Xu;Tianyang Xu;Yuanyou Xu;Bin Yan;Dawei Yang;Ming-Hsuan Yang;Tianyu Yang;Yi Yang;Zongxin Yang;Xuanwu Yin;Fisher Yu;Hongyuan Yu;Qianjin Yu;Weichen Yu;YongSheng Yuan;Zehuan Yuan;Jianlin Zhang;Lu Zhang;Tianzhu Zhang;Guodongfang Zhao;Shaochuan Zhao;Yaozong Zheng;Bineng Zhong;Jiawen Zhu;Xuefeng Zhu;Yueting Zhuang;ChengAo Zong;Kunlong Zuo

2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
Year: 2023 | Conference Paper |
Cited by: Papers (1)
The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitti...Show More

The First Visual Object Tracking Segmentation VOTS2023 Challenge Results

Matej Kristan;Jiří Matas;Martin Danelljan;Michael Felsberg;Hyung Jin Chang;Luka Čehovin Zajc;Alan Lukežič;Ondrej Drbohlav;Zhongqun Zhang;Khanh-Tung Tran;Xuan-Son Vu;Johanna Björklund;Christoph Mayer;Yushan Zhang;Lei Ke;Jie Zhao;Gustavo Fernández;Noor Al-Shakarji;Dong An;Michael Arens;Stefan Becker;Goutam Bhat;Sebastian Bullinger;Antoni B. Chan;Shijie Chang;Hanyuan Chen;Xin Chen;Yan Chen;Zhenyu Chen;Yangming Cheng;Yutao Cui;Chunyuan Deng;Jiahua Dong;Matteo Dunnhofer;Wei Feng;Jianlong Fu;Jie Gao;Ruize Han;Zeqi Hao;Jun-Yan He;Keji He;Zhenyu He;Xiantao Hu;Kaer Huang;Yuqing Huang;Yi Jiang;Ben Kang;Jin-Peng Lan;Hyungjun Lee;Chenyang Li;Jiahao Li;Ning Li;Wangkai Li;Xiaodi Li;Xin Li;Pengyu Liu;Yue Liu;Huchuan Lu;Bin Luo;Ping Luo;Yinchao Ma;Deshui Miao;Christian Micheloni;Kannappan Palaniappan;Hancheol Park;Matthieu Paul;HouWen Peng;Zekun Qian;Gani Rahmon;Norbert Scherer-Negenborn;Pengcheng Shao;Wooksu Shin;Elham Soltani Kazemi;Tianhui Song;Rainer Stiefelhagen;Rui Sun;Chuanming Tang;Zhangyong Tang;Imad Eddine Toubal;Jack Valmadre;Joost van de Weijer;Luc Van Gool;Jash Vira;Stèphane Vujasinović;Cheng Wan;Jia Wan;Dong Wang;Fei Wang;Feifan Wang;He Wang;Limin Wang;Song Wang;Yaowei Wang;Zhepeng Wang;Gangshan Wu;Jiannan Wu;Qiangqiang Wu;Xiaojun Wu;Anqi Xiao;Jinxia Xie;Chenlong Xu;Min Xu;Tianyang Xu;Yuanyou Xu;Bin Yan;Dawei Yang;Ming-Hsuan Yang;Tianyu Yang;Yi Yang;Zongxin Yang;Xuanwu Yin;Fisher Yu;Hongyuan Yu;Qianjin Yu;Weichen Yu;YongSheng Yuan;Zehuan Yuan;Jianlin Zhang;Lu Zhang;Tianzhu Zhang;Guodongfang Zhao;Shaochuan Zhao;Yaozong Zheng;Bineng Zhong;Jiawen Zhu;Xuefeng Zhu;Yueting Zhuang;ChengAo Zong;Kunlong Zuo

Cache side-channel attacks (CSCAs), capable of deducing secrets by analyzing timing differences in the shared cache behavior of modern processors, pose a serious security threat. While there are approaches for detecting CSCAs and mitigating information leaks, they either fail to detect and classify new variants or have to impractically update deployed systems (e.g., CPU). In this work, we propose ...Show More