Kunyu Shi - IEEE Xplore Author Profile

Showing 1-3 of 3 results

Filter Results

Show

Results

Sequence-to-sequence vision-language models are showing promise, but their applicability is limited by their inference latency due to their autoregressive way of generating predictions. We propose a parallel decoding sequence-to-sequence vision-language model, trained with a Query-CTC loss, that marginalizes over multiple inference paths in the decoder. This allows us to model the joint distributi...Show More
We propose Strongly Supervised pre-training with ScreenShots (S4) - a novel pre-training paradigm for Vision-Language Models using data from large-scale web screenshot rendering. Using web screenshots unlocks a treasure trove of visual and textual cues that are not present in using image-text pairs. In S4, we leverage the inherent tree-structured hierarchy of HTML elements and the spatial localiza...Show More
Panoptic segmentation requires segments of both “things” (countable object instances) and “stuff” (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for “things”) and semantic segmentation (for “stuff”) into a non-overlapping placement of segments, and resolves overlaps. However, instance ordering with detection confidence do...Show More