Felix Sattler - IEEE Xplore Author Profile

Showing 1-8 of 8 results

Filter Results

Show

Results

Federated Learning (FL) has emerged as a powerful paradigm in Artificial Intelligence, facilitating the parallel training of Artificial Neural Networks on edge devices while safeguarding data privacy. Nonetheless, to encourage widespread adoption, Federated Learning Frameworks (FLFs) must tackle (i) the power imbalance between a central authority and its participants, and (ii) the challenge of equ...Show More
Federated distillation (FD) is a popular novel algorithmic paradigm for Federated learning (FL), which achieves training performance competitive to prior parameter averaging-based methods, while additionally allowing the clients to train different model architectures, by distilling the client predictions on an unlabeled auxiliary set of data into a student model. In this work, we propose FedAUX, a...Show More
Communication constraints are one of the majorchallenges preventing the wide-spread adoption of Federated Learning systems. Recently, Federated Distillation (FD), a new algorithmic paradigm for Federated Learning with fundamentally different communication properties, emerged. FD methods leverage ensemble distillation techniques and exchange model outputs, presented as soft labels on an unlabeled p...Show More
Federated learning (FL) is currently the most widely adopted framework for collaborative training of (deep) machine learning models under privacy constraints. Albeit its popularity, it has been observed that FL yields suboptimal results if the local clients’ data distributions diverge. To address this issue, we present clustered FL (CFL), a novel federated multitask learning (FMTL) framework, whic...Show More
An increasing number of distributed machine learning applications require efficient communication of neural network parameterizations. DeepCABAC, an algorithm in the current working draft of the emerging MPEG-7 part 17 standard for compression of neural networks for multimedia content description and analysis, has demonstrated high compression gains for a variety of neural network models. In this ...Show More
Federated Learning (FL) is currently the most widely adopted framework for collaborative training of (deep) machine learning models under privacy constraints. Albeit it's popularity, it has been observed that Federated Learning yields suboptimal results if the local clients' data distributions diverge. The recently proposed Clustered Federated Learning Framework addresses this issue, by separating...Show More
Federated learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning, however, comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been ...Show More
Currently, progressively larger deep neural networks are trained on ever growing data corpora. In result, distributed training schemes are becoming increasingly relevant. A major issue in distributed training is the limited communication bandwidth between contributing nodes or prohibitive communication cost in general. To mitigate this problem we propose Sparse Binary Compression (SBC), a compress...Show More